{"title":"无线传感器网络分布式CESVM-DR异常检测","authors":"Nurfazrina Mohd Zamry, A. Zainal, M. Rassam","doi":"10.11113/IJIC.V9N1.218","DOIUrl":null,"url":null,"abstract":"Nowadays, the advancement of the sensor technology, has introduced the smart living community where the sensor is communicating with each other or to other entities. This has introduced the new term called internet-of-things (IoT). The data collected from sensor nodes will be analyzed at the endpoint called based station or sink for decision making. Unfortunately, accurate data is not usually accurate and reliable which will affect the decision making at the base station. There are many reasons constituted to the inaccurate and unreliable data like the malicious attack, harsh environment as well as the sensor node failure itself. In a worse case scenario, the node failure will also lead to the dysfunctional of the entire network. Therefore, in this paper, an unsupervised one-class SVM (OCSVM) is used to build the anomaly detection schemes in recourse constraint Wireless Sensor Networks (WSNs). Distributed network topology will be used to minimize the data communication in the network which can prolong the network lifetime. Meanwhile, the dimension reduction has been providing the lightweight of the anomaly detection schemes. In this paper Distributed Centered Hyperellipsoidal Support Vector Machine (DCESVM-DR) anomaly detection schemes is proposed to provide the efficiency and effectiveness of the anomaly detection schemes.","PeriodicalId":50314,"journal":{"name":"International Journal of Innovative Computing Information and Control","volume":"23 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2019-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributed CESVM-DR Anomaly Detection for Wireless Sensor Network\",\"authors\":\"Nurfazrina Mohd Zamry, A. Zainal, M. Rassam\",\"doi\":\"10.11113/IJIC.V9N1.218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the advancement of the sensor technology, has introduced the smart living community where the sensor is communicating with each other or to other entities. This has introduced the new term called internet-of-things (IoT). The data collected from sensor nodes will be analyzed at the endpoint called based station or sink for decision making. Unfortunately, accurate data is not usually accurate and reliable which will affect the decision making at the base station. There are many reasons constituted to the inaccurate and unreliable data like the malicious attack, harsh environment as well as the sensor node failure itself. In a worse case scenario, the node failure will also lead to the dysfunctional of the entire network. Therefore, in this paper, an unsupervised one-class SVM (OCSVM) is used to build the anomaly detection schemes in recourse constraint Wireless Sensor Networks (WSNs). Distributed network topology will be used to minimize the data communication in the network which can prolong the network lifetime. Meanwhile, the dimension reduction has been providing the lightweight of the anomaly detection schemes. In this paper Distributed Centered Hyperellipsoidal Support Vector Machine (DCESVM-DR) anomaly detection schemes is proposed to provide the efficiency and effectiveness of the anomaly detection schemes.\",\"PeriodicalId\":50314,\"journal\":{\"name\":\"International Journal of Innovative Computing Information and Control\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2019-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Innovative Computing Information and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11113/IJIC.V9N1.218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Innovative Computing Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11113/IJIC.V9N1.218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Distributed CESVM-DR Anomaly Detection for Wireless Sensor Network
Nowadays, the advancement of the sensor technology, has introduced the smart living community where the sensor is communicating with each other or to other entities. This has introduced the new term called internet-of-things (IoT). The data collected from sensor nodes will be analyzed at the endpoint called based station or sink for decision making. Unfortunately, accurate data is not usually accurate and reliable which will affect the decision making at the base station. There are many reasons constituted to the inaccurate and unreliable data like the malicious attack, harsh environment as well as the sensor node failure itself. In a worse case scenario, the node failure will also lead to the dysfunctional of the entire network. Therefore, in this paper, an unsupervised one-class SVM (OCSVM) is used to build the anomaly detection schemes in recourse constraint Wireless Sensor Networks (WSNs). Distributed network topology will be used to minimize the data communication in the network which can prolong the network lifetime. Meanwhile, the dimension reduction has been providing the lightweight of the anomaly detection schemes. In this paper Distributed Centered Hyperellipsoidal Support Vector Machine (DCESVM-DR) anomaly detection schemes is proposed to provide the efficiency and effectiveness of the anomaly detection schemes.
期刊介绍:
The primary aim of the International Journal of Innovative Computing, Information and Control (IJICIC) is to publish high-quality papers of new developments and trends, novel techniques and approaches, innovative methodologies and technologies on the theory and applications of intelligent systems, information and control. The IJICIC is a peer-reviewed English language journal and is published bimonthly