用于灵活物联网无线系统的超宽带天线阵列

IF 6.7 1区 计算机科学 Q1 Physics and Astronomy
H. Raad
{"title":"用于灵活物联网无线系统的超宽带天线阵列","authors":"H. Raad","doi":"10.2528/PIER18060804","DOIUrl":null,"url":null,"abstract":"In this paper a flexible compact antenna array operating in the 3.213 GHz which covers the standard UltraWide Band (UWB) frequency range is presented. The design is aimed at integration within Multiple Input Multiple Output (MIMO) based flexible electronics for Internet of Things (IoT) applications. The proposed antenna is printed on a single side of a 50.8 μm Kapton Polyimide substrate and consists of two half-elliptical shaped radiating elements fed by two Coplanar Waveguide (CPW) structures. The simulated and measured results show that the proposed antenna array achieves a broad impedance bandwidth with reasonable isolation performance (S12 < −23 dB) across the operating bandwidth. Furthermore, the proposed antenna exhibits a low susceptibility to performance degradation caused by the effect of bending. The system’s isolation performance along with its flexible and thin profile suggests that the proposed antenna is suitable for integration within flexible Internet of Things (IoT) wireless systems.","PeriodicalId":54551,"journal":{"name":"Progress in Electromagnetics Research-Pier","volume":"15 1","pages":"109-121"},"PeriodicalIF":6.7000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"An UWB Antenna Array for Flexible IoT Wireless Systems\",\"authors\":\"H. Raad\",\"doi\":\"10.2528/PIER18060804\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a flexible compact antenna array operating in the 3.213 GHz which covers the standard UltraWide Band (UWB) frequency range is presented. The design is aimed at integration within Multiple Input Multiple Output (MIMO) based flexible electronics for Internet of Things (IoT) applications. The proposed antenna is printed on a single side of a 50.8 μm Kapton Polyimide substrate and consists of two half-elliptical shaped radiating elements fed by two Coplanar Waveguide (CPW) structures. The simulated and measured results show that the proposed antenna array achieves a broad impedance bandwidth with reasonable isolation performance (S12 < −23 dB) across the operating bandwidth. Furthermore, the proposed antenna exhibits a low susceptibility to performance degradation caused by the effect of bending. The system’s isolation performance along with its flexible and thin profile suggests that the proposed antenna is suitable for integration within flexible Internet of Things (IoT) wireless systems.\",\"PeriodicalId\":54551,\"journal\":{\"name\":\"Progress in Electromagnetics Research-Pier\",\"volume\":\"15 1\",\"pages\":\"109-121\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Electromagnetics Research-Pier\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.2528/PIER18060804\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Electromagnetics Research-Pier","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.2528/PIER18060804","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种工作在3.213 GHz、覆盖标准超宽带(UWB)频率范围的柔性紧凑型天线阵列。该设计旨在集成基于多输入多输出(MIMO)的柔性电子设备,用于物联网(IoT)应用。该天线被打印在50.8 μm Kapton聚酰亚胺衬底的单面上,由两个共面波导(CPW)结构馈送的两个半椭圆形辐射元件组成。仿真和实测结果表明,该天线阵列在整个工作带宽内具有较宽的阻抗带宽和合理的隔离性能(S12 <−23 dB)。此外,该天线对弯曲效应引起的性能下降具有较低的敏感性。该系统的隔离性能以及其灵活轻薄的外形表明,所提出的天线适合集成在灵活的物联网(IoT)无线系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An UWB Antenna Array for Flexible IoT Wireless Systems
In this paper a flexible compact antenna array operating in the 3.213 GHz which covers the standard UltraWide Band (UWB) frequency range is presented. The design is aimed at integration within Multiple Input Multiple Output (MIMO) based flexible electronics for Internet of Things (IoT) applications. The proposed antenna is printed on a single side of a 50.8 μm Kapton Polyimide substrate and consists of two half-elliptical shaped radiating elements fed by two Coplanar Waveguide (CPW) structures. The simulated and measured results show that the proposed antenna array achieves a broad impedance bandwidth with reasonable isolation performance (S12 < −23 dB) across the operating bandwidth. Furthermore, the proposed antenna exhibits a low susceptibility to performance degradation caused by the effect of bending. The system’s isolation performance along with its flexible and thin profile suggests that the proposed antenna is suitable for integration within flexible Internet of Things (IoT) wireless systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
3.00%
发文量
0
审稿时长
1.3 months
期刊介绍: Progress In Electromagnetics Research (PIER) publishes peer-reviewed original and comprehensive articles on all aspects of electromagnetic theory and applications. This is an open access, on-line journal PIER (E-ISSN 1559-8985). It has been first published as a monograph series on Electromagnetic Waves (ISSN 1070-4698) in 1989. It is freely available to all readers via the Internet.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信