{"title":"强强迫Mathieu方程的响应。第1部分:循环荷载","authors":"V. Ramakrishnan, B. Feeny","doi":"10.1115/1.4056906","DOIUrl":null,"url":null,"abstract":"\n This work concerns the response of a damped Mathieu equation with hard cyclic excitation at the same frequency as the parametric excitation. A second-order perturbation analysis using the method of multiple scales unfolds resonances and stability. Superharmonic and subharmonic resonances are analyzed and the effects of different parameters on the responses are examined. While superharmonic resonances of order two have been captured by a first-order analysis, the second-order analysis improves the prediction of the peak frequency. Superharmonic resonances of order three are captured only by the second-order analysis. The order-two superharmonic resonance amplitude is of order epsilon^0, and the order-three superharmonic is of order epsilon. As the parametric excitation level increases, the superharmonic resonances increase. An n-th order multiple scales analysis will indicate conditions of superharmonic resonances of order n+1. At the subharmonic of order one half, there is no steady-state resonance, but known subharmonic instability is unfolded consistently. Analytical expressions for resonant responses are presented and compared with numerical results for specific system parameters. The behavior of this system could be relevant to applications such as large wind-turbine blades and parametric resonators.","PeriodicalId":49957,"journal":{"name":"Journal of Vibration and Acoustics-Transactions of the Asme","volume":"16 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Responses of a strongly forced Mathieu equation Part 1: cyclic loading\",\"authors\":\"V. Ramakrishnan, B. Feeny\",\"doi\":\"10.1115/1.4056906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This work concerns the response of a damped Mathieu equation with hard cyclic excitation at the same frequency as the parametric excitation. A second-order perturbation analysis using the method of multiple scales unfolds resonances and stability. Superharmonic and subharmonic resonances are analyzed and the effects of different parameters on the responses are examined. While superharmonic resonances of order two have been captured by a first-order analysis, the second-order analysis improves the prediction of the peak frequency. Superharmonic resonances of order three are captured only by the second-order analysis. The order-two superharmonic resonance amplitude is of order epsilon^0, and the order-three superharmonic is of order epsilon. As the parametric excitation level increases, the superharmonic resonances increase. An n-th order multiple scales analysis will indicate conditions of superharmonic resonances of order n+1. At the subharmonic of order one half, there is no steady-state resonance, but known subharmonic instability is unfolded consistently. Analytical expressions for resonant responses are presented and compared with numerical results for specific system parameters. The behavior of this system could be relevant to applications such as large wind-turbine blades and parametric resonators.\",\"PeriodicalId\":49957,\"journal\":{\"name\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vibration and Acoustics-Transactions of the Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056906\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vibration and Acoustics-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4056906","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
Responses of a strongly forced Mathieu equation Part 1: cyclic loading
This work concerns the response of a damped Mathieu equation with hard cyclic excitation at the same frequency as the parametric excitation. A second-order perturbation analysis using the method of multiple scales unfolds resonances and stability. Superharmonic and subharmonic resonances are analyzed and the effects of different parameters on the responses are examined. While superharmonic resonances of order two have been captured by a first-order analysis, the second-order analysis improves the prediction of the peak frequency. Superharmonic resonances of order three are captured only by the second-order analysis. The order-two superharmonic resonance amplitude is of order epsilon^0, and the order-three superharmonic is of order epsilon. As the parametric excitation level increases, the superharmonic resonances increase. An n-th order multiple scales analysis will indicate conditions of superharmonic resonances of order n+1. At the subharmonic of order one half, there is no steady-state resonance, but known subharmonic instability is unfolded consistently. Analytical expressions for resonant responses are presented and compared with numerical results for specific system parameters. The behavior of this system could be relevant to applications such as large wind-turbine blades and parametric resonators.
期刊介绍:
The Journal of Vibration and Acoustics is sponsored jointly by the Design Engineering and the Noise Control and Acoustics Divisions of ASME. The Journal is the premier international venue for publication of original research concerning mechanical vibration and sound. Our mission is to serve researchers and practitioners who seek cutting-edge theories and computational and experimental methods that advance these fields. Our published studies reveal how mechanical vibration and sound impact the design and performance of engineered devices and structures and how to control their negative influences.
Vibration of continuous and discrete dynamical systems; Linear and nonlinear vibrations; Random vibrations; Wave propagation; Modal analysis; Mechanical signature analysis; Structural dynamics and control; Vibration energy harvesting; Vibration suppression; Vibration isolation; Passive and active damping; Machinery dynamics; Rotor dynamics; Acoustic emission; Noise control; Machinery noise; Structural acoustics; Fluid-structure interaction; Aeroelasticity; Flow-induced vibration and noise.