用于诊断分布式应用程序中的性能问题的自动化跨层检测框架

E. Ates, Lily Sturmann, Mert Toslali, O. Krieger, Richard Megginson, A. Coskun, Raja R. Sambasivan
{"title":"用于诊断分布式应用程序中的性能问题的自动化跨层检测框架","authors":"E. Ates, Lily Sturmann, Mert Toslali, O. Krieger, Richard Megginson, A. Coskun, Raja R. Sambasivan","doi":"10.1145/3357223.3362704","DOIUrl":null,"url":null,"abstract":"Diagnosing performance problems in distributed applications is extremely challenging. A significant reason is that it is hard to know where to place instrumentation a priori to help diagnose problems that may occur in the future. We present the vision of an automated instrumentation framework, Pythia, that runs alongside deployed distributed applications. In response to a newly-observed performance problem, Pythia searches the space of possible instrumentation choices to enable the instrumentation needed to help diagnose it. Our vision for Pythia builds on workflow-centric tracing, which records the order and timing of how requests are processed within and among a distributed application's nodes (i.e., records their workflows). It uses the key insight that localizing the sources high performance variation within the workflows of requests that are expected to perform similarly gives insight into where additional instrumentation is needed.","PeriodicalId":91949,"journal":{"name":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","volume":"107 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"An automated, cross-layer instrumentation framework for diagnosing performance problems in distributed applications\",\"authors\":\"E. Ates, Lily Sturmann, Mert Toslali, O. Krieger, Richard Megginson, A. Coskun, Raja R. Sambasivan\",\"doi\":\"10.1145/3357223.3362704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosing performance problems in distributed applications is extremely challenging. A significant reason is that it is hard to know where to place instrumentation a priori to help diagnose problems that may occur in the future. We present the vision of an automated instrumentation framework, Pythia, that runs alongside deployed distributed applications. In response to a newly-observed performance problem, Pythia searches the space of possible instrumentation choices to enable the instrumentation needed to help diagnose it. Our vision for Pythia builds on workflow-centric tracing, which records the order and timing of how requests are processed within and among a distributed application's nodes (i.e., records their workflows). It uses the key insight that localizing the sources high performance variation within the workflows of requests that are expected to perform similarly gives insight into where additional instrumentation is needed.\",\"PeriodicalId\":91949,\"journal\":{\"name\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357223.3362704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM Symposium on Cloud Computing [electronic resource] : SOCC ... ... SoCC (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357223.3362704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

诊断分布式应用程序中的性能问题极具挑战性。一个重要的原因是,很难预先知道在哪里放置仪器来帮助诊断将来可能发生的问题。我们展示了自动化检测框架Pythia的愿景,它与部署的分布式应用程序一起运行。为了响应新观察到的性能问题,Pythia搜索可能的工具选择空间,以启用帮助诊断该问题所需的工具。我们对Pythia的愿景是建立在以工作流为中心的跟踪上,它记录了分布式应用程序节点内部和节点之间处理请求的顺序和时间(即记录它们的工作流)。它使用了一个关键的洞察力,即在期望执行类似的请求的工作流中本地化源高性能变化,从而洞察需要额外的工具的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An automated, cross-layer instrumentation framework for diagnosing performance problems in distributed applications
Diagnosing performance problems in distributed applications is extremely challenging. A significant reason is that it is hard to know where to place instrumentation a priori to help diagnose problems that may occur in the future. We present the vision of an automated instrumentation framework, Pythia, that runs alongside deployed distributed applications. In response to a newly-observed performance problem, Pythia searches the space of possible instrumentation choices to enable the instrumentation needed to help diagnose it. Our vision for Pythia builds on workflow-centric tracing, which records the order and timing of how requests are processed within and among a distributed application's nodes (i.e., records their workflows). It uses the key insight that localizing the sources high performance variation within the workflows of requests that are expected to perform similarly gives insight into where additional instrumentation is needed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信