J. Silva, Guilherme Eduardo Ignácio, Thayane C. M. Nepel, G. Doubek, R. M. Filho
{"title":"电池用干溶剂:3A沸石吸附二甲亚砜的平衡研究","authors":"J. Silva, Guilherme Eduardo Ignácio, Thayane C. M. Nepel, G. Doubek, R. M. Filho","doi":"10.3303/CET2186183","DOIUrl":null,"url":null,"abstract":"Research for new and inexpensive energy storage technologies has been increasing in recent years due to the need to store power from intermittent sources such as wind and solar power. Among these advanced energy storage technologies, the Li-O2 battery is described as a suitable candidate because of its high theoretical energy density. Research has been focused on the development of suitable electrodes and electrolytes to allow high energy density and high cyclability, being the latter one of the main challenges. Poor cyclability is often related to undesirable reactions, and one of the sources of this problem is the presence of water in the electrolyte. Nevertheless, it has been shown that trace amounts of water can also catalyze desirable reaction steps in the operation of a Li-O2 battery. Therefore, careful control of water content in the electrolyte of Li-O2 batteries becomes an important task. In this context, this work presents the equilibrium study of water adsorption from dimethyl sulfoxide, a solvent commonly considered for electrolytes of Li-O2 batteries, using 3A zeolites as the adsorbate. Batch adsorption experiments with different concentrations of water and mass of adsorbate were combined to determine the water removal capacity at different conditions of temperature (20 °C, 35 °C, and 50 °C). Adsorption data were fitted to adsorption models (Langmuir, Freundlich, and Dubinin-Radushkevich) to obtain their constants. Additionally, the regeneration of zeolites was evaluated. These data have the potential to be used by other researchers in the development of Li-O2 batteries with electrolytes with precisely controlled water content.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"107 1","pages":"1093-1098"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dry Solvents for Batteries: Equilibrium Study of Water Adsorption from Dimethyl Sulfoxide Using 3A Zeolite\",\"authors\":\"J. Silva, Guilherme Eduardo Ignácio, Thayane C. M. Nepel, G. Doubek, R. M. Filho\",\"doi\":\"10.3303/CET2186183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Research for new and inexpensive energy storage technologies has been increasing in recent years due to the need to store power from intermittent sources such as wind and solar power. Among these advanced energy storage technologies, the Li-O2 battery is described as a suitable candidate because of its high theoretical energy density. Research has been focused on the development of suitable electrodes and electrolytes to allow high energy density and high cyclability, being the latter one of the main challenges. Poor cyclability is often related to undesirable reactions, and one of the sources of this problem is the presence of water in the electrolyte. Nevertheless, it has been shown that trace amounts of water can also catalyze desirable reaction steps in the operation of a Li-O2 battery. Therefore, careful control of water content in the electrolyte of Li-O2 batteries becomes an important task. In this context, this work presents the equilibrium study of water adsorption from dimethyl sulfoxide, a solvent commonly considered for electrolytes of Li-O2 batteries, using 3A zeolites as the adsorbate. Batch adsorption experiments with different concentrations of water and mass of adsorbate were combined to determine the water removal capacity at different conditions of temperature (20 °C, 35 °C, and 50 °C). Adsorption data were fitted to adsorption models (Langmuir, Freundlich, and Dubinin-Radushkevich) to obtain their constants. Additionally, the regeneration of zeolites was evaluated. These data have the potential to be used by other researchers in the development of Li-O2 batteries with electrolytes with precisely controlled water content.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"107 1\",\"pages\":\"1093-1098\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2186183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2186183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Dry Solvents for Batteries: Equilibrium Study of Water Adsorption from Dimethyl Sulfoxide Using 3A Zeolite
Research for new and inexpensive energy storage technologies has been increasing in recent years due to the need to store power from intermittent sources such as wind and solar power. Among these advanced energy storage technologies, the Li-O2 battery is described as a suitable candidate because of its high theoretical energy density. Research has been focused on the development of suitable electrodes and electrolytes to allow high energy density and high cyclability, being the latter one of the main challenges. Poor cyclability is often related to undesirable reactions, and one of the sources of this problem is the presence of water in the electrolyte. Nevertheless, it has been shown that trace amounts of water can also catalyze desirable reaction steps in the operation of a Li-O2 battery. Therefore, careful control of water content in the electrolyte of Li-O2 batteries becomes an important task. In this context, this work presents the equilibrium study of water adsorption from dimethyl sulfoxide, a solvent commonly considered for electrolytes of Li-O2 batteries, using 3A zeolites as the adsorbate. Batch adsorption experiments with different concentrations of water and mass of adsorbate were combined to determine the water removal capacity at different conditions of temperature (20 °C, 35 °C, and 50 °C). Adsorption data were fitted to adsorption models (Langmuir, Freundlich, and Dubinin-Radushkevich) to obtain their constants. Additionally, the regeneration of zeolites was evaluated. These data have the potential to be used by other researchers in the development of Li-O2 batteries with electrolytes with precisely controlled water content.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering