形状变化引起的运动

Oliver Gross, Yousuf Soliman, Marcel Padilla, Felix Knöppel, U. Pinkall, P. Schröder
{"title":"形状变化引起的运动","authors":"Oliver Gross, Yousuf Soliman, Marcel Padilla, Felix Knöppel, U. Pinkall, P. Schröder","doi":"10.1145/3592417","DOIUrl":null,"url":null,"abstract":"We consider motion effected by shape change. Such motions are ubiquitous in nature and the human made environment, ranging from single cells to platform divers and jellyfish. The shapes may be immersed in various media ranging from the very viscous to air and nearly inviscid fluids. In the absence of external forces these settings are characterized by constant momentum. We exploit this in an algorithm which takes a sequence of changing shapes, say, as modeled by an animator, as input and produces corresponding motion in world coordinates. Our method is based on the geometry of shape change and an appropriate variational principle. The corresponding Euler-Lagrange equations are first order ODEs in the unknown rotations and translations and the resulting time stepping algorithm applies to all these settings without modification as we demonstrate with a broad set of examples.","PeriodicalId":7077,"journal":{"name":"ACM Transactions on Graphics (TOG)","volume":"18 1","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Motion from Shape Change\",\"authors\":\"Oliver Gross, Yousuf Soliman, Marcel Padilla, Felix Knöppel, U. Pinkall, P. Schröder\",\"doi\":\"10.1145/3592417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider motion effected by shape change. Such motions are ubiquitous in nature and the human made environment, ranging from single cells to platform divers and jellyfish. The shapes may be immersed in various media ranging from the very viscous to air and nearly inviscid fluids. In the absence of external forces these settings are characterized by constant momentum. We exploit this in an algorithm which takes a sequence of changing shapes, say, as modeled by an animator, as input and produces corresponding motion in world coordinates. Our method is based on the geometry of shape change and an appropriate variational principle. The corresponding Euler-Lagrange equations are first order ODEs in the unknown rotations and translations and the resulting time stepping algorithm applies to all these settings without modification as we demonstrate with a broad set of examples.\",\"PeriodicalId\":7077,\"journal\":{\"name\":\"ACM Transactions on Graphics (TOG)\",\"volume\":\"18 1\",\"pages\":\"1 - 11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Graphics (TOG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3592417\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics (TOG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3592417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们认为运动受形状变化的影响。这种运动在自然界和人造环境中无处不在,从单细胞到平台潜水员和水母。这些形状可以浸泡在各种介质中,从非常粘的到空气和几乎不粘的流体。在没有外力的情况下,这些环境的特点是动量恒定。我们在一种算法中利用这一点,该算法采用一系列变化的形状,例如由动画师建模,作为输入,并在世界坐标中产生相应的运动。该方法基于形状变化的几何原理和适当的变分原理。相应的欧拉-拉格朗日方程是未知旋转和平移情况下的一阶ode,由此产生的时间步进算法适用于所有这些设置,而无需修改,正如我们通过一组广泛的示例所演示的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Motion from Shape Change
We consider motion effected by shape change. Such motions are ubiquitous in nature and the human made environment, ranging from single cells to platform divers and jellyfish. The shapes may be immersed in various media ranging from the very viscous to air and nearly inviscid fluids. In the absence of external forces these settings are characterized by constant momentum. We exploit this in an algorithm which takes a sequence of changing shapes, say, as modeled by an animator, as input and produces corresponding motion in world coordinates. Our method is based on the geometry of shape change and an appropriate variational principle. The corresponding Euler-Lagrange equations are first order ODEs in the unknown rotations and translations and the resulting time stepping algorithm applies to all these settings without modification as we demonstrate with a broad set of examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信