指标函数的多项式型混沌展开的比较研究

IF 2.1 3区 工程技术 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Florian Bourgey, E. Gobet, C. Rey
{"title":"指标函数的多项式型混沌展开的比较研究","authors":"Florian Bourgey, E. Gobet, C. Rey","doi":"10.1137/21m1413146","DOIUrl":null,"url":null,"abstract":"We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator functions of the form 1 c ≤ X for some threshold parameter c ∈ R and a random variable X associated with classical orthogonal polynomials. We provide tight global and localized L 2 estimates for the resulting truncation of the PCE and numerical experiments support the tightness of the error estimates. We also compare the theoretical and numerical accuracy of PCE when extra quantile/probability transforms are applied, revealing different optimal choices according to the value of c in the center and the tails of the distribution of X .","PeriodicalId":56064,"journal":{"name":"Siam-Asa Journal on Uncertainty Quantification","volume":"32 1","pages":"1350-1383"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study of Polynomial-Type Chaos Expansions for Indicator Functions\",\"authors\":\"Florian Bourgey, E. Gobet, C. Rey\",\"doi\":\"10.1137/21m1413146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator functions of the form 1 c ≤ X for some threshold parameter c ∈ R and a random variable X associated with classical orthogonal polynomials. We provide tight global and localized L 2 estimates for the resulting truncation of the PCE and numerical experiments support the tightness of the error estimates. We also compare the theoretical and numerical accuracy of PCE when extra quantile/probability transforms are applied, revealing different optimal choices according to the value of c in the center and the tails of the distribution of X .\",\"PeriodicalId\":56064,\"journal\":{\"name\":\"Siam-Asa Journal on Uncertainty Quantification\",\"volume\":\"32 1\",\"pages\":\"1350-1383\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam-Asa Journal on Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1137/21m1413146\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam-Asa Journal on Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1137/21m1413146","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 2

摘要

针对一类阈值参数c∈R和随机变量X与经典正交多项式相关的形式为1c≤X的指标函数,我们提出了一种多项式混沌展开式(PCE)的全面比较。我们对PCE截断的结果提供了严密的全局和局部l2估计,数值实验支持误差估计的严密性。我们还比较了应用额外的分位数/概率变换时PCE的理论和数值精度,揭示了根据X分布的中心和尾部c的值不同的最优选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Polynomial-Type Chaos Expansions for Indicator Functions
We propose a thorough comparison of polynomial chaos expansion (PCE) for indicator functions of the form 1 c ≤ X for some threshold parameter c ∈ R and a random variable X associated with classical orthogonal polynomials. We provide tight global and localized L 2 estimates for the resulting truncation of the PCE and numerical experiments support the tightness of the error estimates. We also compare the theoretical and numerical accuracy of PCE when extra quantile/probability transforms are applied, revealing different optimal choices according to the value of c in the center and the tails of the distribution of X .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Siam-Asa Journal on Uncertainty Quantification
Siam-Asa Journal on Uncertainty Quantification Mathematics-Statistics and Probability
CiteScore
3.70
自引率
0.00%
发文量
51
期刊介绍: SIAM/ASA Journal on Uncertainty Quantification (JUQ) publishes research articles presenting significant mathematical, statistical, algorithmic, and application advances in uncertainty quantification, defined as the interface of complex modeling of processes and data, especially characterizations of the uncertainties inherent in the use of such models. The journal also focuses on related fields such as sensitivity analysis, model validation, model calibration, data assimilation, and code verification. The journal also solicits papers describing new ideas that could lead to significant progress in methodology for uncertainty quantification as well as review articles on particular aspects. The journal is dedicated to nurturing synergistic interactions between the mathematical, statistical, computational, and applications communities involved in uncertainty quantification and related areas. JUQ is jointly offered by SIAM and the American Statistical Association.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信