Nafiseh Ebrahimi, H. A. Ahangar, M. Chellali, S. M. Sheikholeslami
{"title":"图与小或大罗马{3}-支配数","authors":"Nafiseh Ebrahimi, H. A. Ahangar, M. Chellali, S. M. Sheikholeslami","doi":"10.1051/ro/2023058","DOIUrl":null,"url":null,"abstract":"For an integer $k\\geq1,$ a Roman $\\{k\\}$-dominating function (R$\\{k\\}$DF) on a\n\ngraph $G=(V,E)$ is a function $f:V\\rightarrow\\{0,1,\\dots,k\\}$ such that for\n\nevery vertex $v\\in V$ with $f(v)=0$, $\\sum_{u\\in N(v)}f(u)\\geq k$, where\n\n$N(v)$ is the set of vertices adjacent to $v.$ The weight of an R $\\{k\\}$DF is\n\nthe sum of its function values over the whole set of vertices, and the Roman\n\n$\\{k\\}$-domination number $\\gamma_{\\{kR\\}}(G)$ is the minimum weight of an\n\nR$\\{k\\}$DF on $G$. In this paper, we will be focusing on the case $k=3$, where\n\ntrivially for every connected graphs of order $n\\geq3,$ $3\\leq$ $\\gamma\n\n_{\\{kR\\}}(G)\\leq n.$ We characterize all connected graphs $G$ of order\n\n$n\\geq3$ such that $\\gamma_{\\{3R\\}}(G)\\in\\{3,n-1,n\\},$ and we improve the\n\nprevious lower and upper bounds. Moreover, we show that for every tree $T$ of\n\norder $n\\geq3$, $\\gamma_{\\{3R\\}}(T)\\geq\\gamma(T)+2$, where $\\gamma(T)$ is the\n\ndomination number of $T,$ and we characterize the trees attaining this bound.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs with small or large Roman {3}-domination number\",\"authors\":\"Nafiseh Ebrahimi, H. A. Ahangar, M. Chellali, S. M. Sheikholeslami\",\"doi\":\"10.1051/ro/2023058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an integer $k\\\\geq1,$ a Roman $\\\\{k\\\\}$-dominating function (R$\\\\{k\\\\}$DF) on a\\n\\ngraph $G=(V,E)$ is a function $f:V\\\\rightarrow\\\\{0,1,\\\\dots,k\\\\}$ such that for\\n\\nevery vertex $v\\\\in V$ with $f(v)=0$, $\\\\sum_{u\\\\in N(v)}f(u)\\\\geq k$, where\\n\\n$N(v)$ is the set of vertices adjacent to $v.$ The weight of an R $\\\\{k\\\\}$DF is\\n\\nthe sum of its function values over the whole set of vertices, and the Roman\\n\\n$\\\\{k\\\\}$-domination number $\\\\gamma_{\\\\{kR\\\\}}(G)$ is the minimum weight of an\\n\\nR$\\\\{k\\\\}$DF on $G$. In this paper, we will be focusing on the case $k=3$, where\\n\\ntrivially for every connected graphs of order $n\\\\geq3,$ $3\\\\leq$ $\\\\gamma\\n\\n_{\\\\{kR\\\\}}(G)\\\\leq n.$ We characterize all connected graphs $G$ of order\\n\\n$n\\\\geq3$ such that $\\\\gamma_{\\\\{3R\\\\}}(G)\\\\in\\\\{3,n-1,n\\\\},$ and we improve the\\n\\nprevious lower and upper bounds. Moreover, we show that for every tree $T$ of\\n\\norder $n\\\\geq3$, $\\\\gamma_{\\\\{3R\\\\}}(T)\\\\geq\\\\gamma(T)+2$, where $\\\\gamma(T)$ is the\\n\\ndomination number of $T,$ and we characterize the trees attaining this bound.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graphs with small or large Roman {3}-domination number
For an integer $k\geq1,$ a Roman $\{k\}$-dominating function (R$\{k\}$DF) on a
graph $G=(V,E)$ is a function $f:V\rightarrow\{0,1,\dots,k\}$ such that for
every vertex $v\in V$ with $f(v)=0$, $\sum_{u\in N(v)}f(u)\geq k$, where
$N(v)$ is the set of vertices adjacent to $v.$ The weight of an R $\{k\}$DF is
the sum of its function values over the whole set of vertices, and the Roman
$\{k\}$-domination number $\gamma_{\{kR\}}(G)$ is the minimum weight of an
R$\{k\}$DF on $G$. In this paper, we will be focusing on the case $k=3$, where
trivially for every connected graphs of order $n\geq3,$ $3\leq$ $\gamma
_{\{kR\}}(G)\leq n.$ We characterize all connected graphs $G$ of order
$n\geq3$ such that $\gamma_{\{3R\}}(G)\in\{3,n-1,n\},$ and we improve the
previous lower and upper bounds. Moreover, we show that for every tree $T$ of
order $n\geq3$, $\gamma_{\{3R\}}(T)\geq\gamma(T)+2$, where $\gamma(T)$ is the
domination number of $T,$ and we characterize the trees attaining this bound.