具有顶点限制的仙人掌图的区间顶点着色

Albert Kh. Sahakyan, Rafayel R. Kamalian
{"title":"具有顶点限制的仙人掌图的区间顶点着色","authors":"Albert Kh. Sahakyan, Rafayel R. Kamalian","doi":"10.46991/pysu:a/2021.55.3.160","DOIUrl":null,"url":null,"abstract":"An interval vertex-coloring of a graph $G$ is a coloring of the vertices of the graph with intervals of integers such that the intervals of any two adjacent vertices do not intersect. In this paper we consider the case, where for each vertex $v$ there is a length $l(v)$ and a set of colors $S(v),$ from which the colors should be and it is required to find an interval vertex-coloring $\\gamma$ such that for each vertex $v$ the restrictions are met, i.e. $|\\gamma(v)|=l(v),\\gamma(v) \\subseteq S(v) $. We will provide a pseudo-polynomial algorithm for cactus graphs. If it is impossible to have an interval vertex-coloring that satisfies all the restrictions, then the algorithm will tell that as well.","PeriodicalId":21146,"journal":{"name":"Proceedings of the YSU A: Physical and Mathematical Sciences","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"INTERVAL VERTEX-COLORINGS OF CACTUS GRAPHS WITH RESTRICTIONS ON VERTICES\",\"authors\":\"Albert Kh. Sahakyan, Rafayel R. Kamalian\",\"doi\":\"10.46991/pysu:a/2021.55.3.160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An interval vertex-coloring of a graph $G$ is a coloring of the vertices of the graph with intervals of integers such that the intervals of any two adjacent vertices do not intersect. In this paper we consider the case, where for each vertex $v$ there is a length $l(v)$ and a set of colors $S(v),$ from which the colors should be and it is required to find an interval vertex-coloring $\\\\gamma$ such that for each vertex $v$ the restrictions are met, i.e. $|\\\\gamma(v)|=l(v),\\\\gamma(v) \\\\subseteq S(v) $. We will provide a pseudo-polynomial algorithm for cactus graphs. If it is impossible to have an interval vertex-coloring that satisfies all the restrictions, then the algorithm will tell that as well.\",\"PeriodicalId\":21146,\"journal\":{\"name\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the YSU A: Physical and Mathematical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46991/pysu:a/2021.55.3.160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the YSU A: Physical and Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46991/pysu:a/2021.55.3.160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图$G$的区间顶点着色是用整数区间对图的顶点着色,使得任意两个相邻顶点的区间不相交。本文考虑了这样一种情况:对于每个顶点$v$,有一个长度$l(v)$和一组颜色$S(v) $,从这些颜色$中,我们需要找到一个区间顶点着色$\gamma$,使得对于每个顶点$v$满足限制,即$|\gamma(v)|=l(v),\gamma(v) \subseteq S(v) $。我们将为仙人掌图提供一个伪多项式算法。如果不可能有一个满足所有限制的区间顶点着色,那么算法也会告诉它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTERVAL VERTEX-COLORINGS OF CACTUS GRAPHS WITH RESTRICTIONS ON VERTICES
An interval vertex-coloring of a graph $G$ is a coloring of the vertices of the graph with intervals of integers such that the intervals of any two adjacent vertices do not intersect. In this paper we consider the case, where for each vertex $v$ there is a length $l(v)$ and a set of colors $S(v),$ from which the colors should be and it is required to find an interval vertex-coloring $\gamma$ such that for each vertex $v$ the restrictions are met, i.e. $|\gamma(v)|=l(v),\gamma(v) \subseteq S(v) $. We will provide a pseudo-polynomial algorithm for cactus graphs. If it is impossible to have an interval vertex-coloring that satisfies all the restrictions, then the algorithm will tell that as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信