罗马的统治重见天日

Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili
{"title":"罗马的统治重见天日","authors":"Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili","doi":"10.1051/ro/2023072","DOIUrl":null,"url":null,"abstract":"Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roman κ-domination revisited\",\"authors\":\"Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili\",\"doi\":\"10.1051/ro/2023072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

[J]。韩国的数学。Soc. 46(2009), 1309-1318]在图中引入了罗马k-支配的概念。对于一个固定的正整数k,函数f: V (G)→{0,1,2}是G上的罗马k支配函数,如果f下每个值为0的顶点与f下至少k个值为2的顶点相邻。本文受图中的联盟概念的启发,通过不固定k重新讨论了罗马k支配的概念。我们证明了仙人掌图中新变种的上界,并刻画了仙人掌图在给定界内达到相等。我们也给出了这种变体的概率上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Roman κ-domination revisited
Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信