Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili
{"title":"罗马的统治重见天日","authors":"Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili","doi":"10.1051/ro/2023072","DOIUrl":null,"url":null,"abstract":"Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Roman κ-domination revisited\",\"authors\":\"Noor A'lawiah Abd Aziz, N. J. Rad, H. Kamarulhaili\",\"doi\":\"10.1051/ro/2023072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.\",\"PeriodicalId\":20872,\"journal\":{\"name\":\"RAIRO Oper. Res.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ro/2023072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
[J]。韩国的数学。Soc. 46(2009), 1309-1318]在图中引入了罗马k-支配的概念。对于一个固定的正整数k,函数f: V (G)→{0,1,2}是G上的罗马k支配函数,如果f下每个值为0的顶点与f下至少k个值为2的顶点相邻。本文受图中的联盟概念的启发,通过不固定k重新讨论了罗马k支配的概念。我们证明了仙人掌图中新变种的上界,并刻画了仙人掌图在给定界内达到相等。我们也给出了这种变体的概率上界。
Kammerling and Volkmann [J. Korean Math. Soc. 46 (2009), 1309–1318] introduced the concept of Roman k-domination in graphs. For a fixed positive integer k, a function f: V (G) → {0,1,2} is a Roman k-dominating function on G if every vertex valued 0 under f is adjacent to at least k vertices valued 2 under f. In this paper, inspired by the concept of alliances in graphs, we revisit the concept of Roman k-domination by not-fixing k. We prove upper bounds for the new variant in cactus graphs and characterize cactus graph achieving equality for the given bound. We also present a probabilistic upper bound for this variant.