精度和相关信息检索有效性度量的无偏低方差估计

G. Cormack, Maura R. Grossman
{"title":"精度和相关信息检索有效性度量的无偏低方差估计","authors":"G. Cormack, Maura R. Grossman","doi":"10.1145/3331184.3331355","DOIUrl":null,"url":null,"abstract":"This work describes an estimator from which unbiased measurements of precision, rank-biased precision, and cumulative gain may be derived from a uniform or non-uniform sample of relevance assessments. Adversarial testing supports the theory that our estimator yields unbiased low-variance measurements from sparse samples, even when used to measure results that are qualitatively different from those returned by known information retrieval methods. Our results suggest that test collections using sampling to select documents for relevance assessment yield more accurate measurements than test collections using pooling, especially for the results of retrieval methods not contributing to the pool.","PeriodicalId":20700,"journal":{"name":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Unbiased Low-Variance Estimators for Precision and Related Information Retrieval Effectiveness Measures\",\"authors\":\"G. Cormack, Maura R. Grossman\",\"doi\":\"10.1145/3331184.3331355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes an estimator from which unbiased measurements of precision, rank-biased precision, and cumulative gain may be derived from a uniform or non-uniform sample of relevance assessments. Adversarial testing supports the theory that our estimator yields unbiased low-variance measurements from sparse samples, even when used to measure results that are qualitatively different from those returned by known information retrieval methods. Our results suggest that test collections using sampling to select documents for relevance assessment yield more accurate measurements than test collections using pooling, especially for the results of retrieval methods not contributing to the pool.\",\"PeriodicalId\":20700,\"journal\":{\"name\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3331184.3331355\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3331184.3331355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作描述了一个估计器,从该估计器中可以从相关评估的均匀或非均匀样本中获得精度,秩偏精度和累积增益的无偏测量。对抗性测试支持这样的理论,即我们的估计器从稀疏的样本中产生无偏的低方差测量,即使用于测量与已知信息检索方法返回的结果在质量上不同的结果。我们的结果表明,使用抽样来选择文档进行相关性评估的测试集合比使用池的测试集合产生更准确的测量结果,特别是对于不参与池的检索方法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unbiased Low-Variance Estimators for Precision and Related Information Retrieval Effectiveness Measures
This work describes an estimator from which unbiased measurements of precision, rank-biased precision, and cumulative gain may be derived from a uniform or non-uniform sample of relevance assessments. Adversarial testing supports the theory that our estimator yields unbiased low-variance measurements from sparse samples, even when used to measure results that are qualitatively different from those returned by known information retrieval methods. Our results suggest that test collections using sampling to select documents for relevance assessment yield more accurate measurements than test collections using pooling, especially for the results of retrieval methods not contributing to the pool.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信