高温下各种纤维增强砂浆的无损特性

IF 1.3 Q3 Earth and Planetary Sciences
Mining Science Pub Date : 2018-01-01 DOI:10.5277/MSC182513
M. Ezziane, Laurent Molez, I. Messaoudene
{"title":"高温下各种纤维增强砂浆的无损特性","authors":"M. Ezziane, Laurent Molez, I. Messaoudene","doi":"10.5277/MSC182513","DOIUrl":null,"url":null,"abstract":"The objective of this study is to investigate the effect of temperature on the physical and mechanical properties of standard mortar reinforced with steel fibers, polypropylene fibers and hybrid fibers. Non-destructive tests (capillary water absorption, interconnected porosity, gas permeability, ultrasound celerity) were carried out on samples that had been heated, at a temperature ramp of 5 °C/min, to maximum temperature of: 105 °C, 400 °C, 500 °C et 800 °C. The results show a good correlation between the evolution of properties and the damage resulting from the imposed heat exposure treatment. The study shows that there is a significant deterioration of physico-mechanical properties of the fiber mortars above 500 °C. The hybrid fiber mortars show a good compromise: the polypropylene fibers guarantee a thermal stability whereas the steel fibers act to conserve good mechanical behavior.","PeriodicalId":43629,"journal":{"name":"Mining Science","volume":"24 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Non-destructive characterisation of mortars reinforced with various fibres exposed to high temperature\",\"authors\":\"M. Ezziane, Laurent Molez, I. Messaoudene\",\"doi\":\"10.5277/MSC182513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this study is to investigate the effect of temperature on the physical and mechanical properties of standard mortar reinforced with steel fibers, polypropylene fibers and hybrid fibers. Non-destructive tests (capillary water absorption, interconnected porosity, gas permeability, ultrasound celerity) were carried out on samples that had been heated, at a temperature ramp of 5 °C/min, to maximum temperature of: 105 °C, 400 °C, 500 °C et 800 °C. The results show a good correlation between the evolution of properties and the damage resulting from the imposed heat exposure treatment. The study shows that there is a significant deterioration of physico-mechanical properties of the fiber mortars above 500 °C. The hybrid fiber mortars show a good compromise: the polypropylene fibers guarantee a thermal stability whereas the steel fibers act to conserve good mechanical behavior.\",\"PeriodicalId\":43629,\"journal\":{\"name\":\"Mining Science\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mining Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5277/MSC182513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mining Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5277/MSC182513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 2

摘要

研究温度对钢纤维、聚丙烯纤维和混杂纤维增强标准砂浆物理力学性能的影响。在5°C/min的温度梯度下加热至最高温度105°C、400°C、500°C和800°C,对样品进行无损检测(毛细管吸水率、相互连通孔隙率、透气性、超声速度)。结果表明,材料的性能变化与热暴露损伤之间存在良好的相关性。研究表明,当温度超过500℃时,纤维砂浆的物理力学性能明显恶化。混合纤维砂浆表现出良好的折衷:聚丙烯纤维保证了热稳定性,而钢纤维则保持了良好的力学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-destructive characterisation of mortars reinforced with various fibres exposed to high temperature
The objective of this study is to investigate the effect of temperature on the physical and mechanical properties of standard mortar reinforced with steel fibers, polypropylene fibers and hybrid fibers. Non-destructive tests (capillary water absorption, interconnected porosity, gas permeability, ultrasound celerity) were carried out on samples that had been heated, at a temperature ramp of 5 °C/min, to maximum temperature of: 105 °C, 400 °C, 500 °C et 800 °C. The results show a good correlation between the evolution of properties and the damage resulting from the imposed heat exposure treatment. The study shows that there is a significant deterioration of physico-mechanical properties of the fiber mortars above 500 °C. The hybrid fiber mortars show a good compromise: the polypropylene fibers guarantee a thermal stability whereas the steel fibers act to conserve good mechanical behavior.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mining Science
Mining Science MINING & MINERAL PROCESSING-
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
24 weeks
期刊介绍: Mining Scince. Scientific Papers of the Department Geoengineering, Mining and Geology of the Wroclaw University of Technology. The journal publishes original papers on mining and geology, geo-engineering and the related issues. The journal is devoted to the following topics: fundamental research in mining, underground and open-cast mining technologies, blasting technology, design and construction of mines, geomechanics and geotechnical engineering, mine ventilation, fluid mechanics and its application in mining, mining machinery and condition monitoring, mineral processing, environmental protection and waste utilization. The journal also accepts papers concerns geoengineering which is a sciences covering mining construction, geotechnical engineering, GIS, and earth sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信