{"title":"基于变换和一阶统计特征的人工神经网络皮肤癌图像分类","authors":"A. Alqaisi, Loay E. George","doi":"10.11591/ijaas.v11.i3.pp232-241","DOIUrl":null,"url":null,"abstract":"Skin cancer is one of the most dangerous types of cancer. Some types of this cancer lead to death, so cancer must be discovered and indexed to avoid its spread through initial detection in the impulsive stage. This paper deals with the detection and indexing of different types of melanomas using an artificial neural network (ANN) depending on the international skin imaging collaboration (ISIC) 2018 dataset that was used. The pre-processing is the most important part because it formulates an image by insolated the cancer part from the skin image. It consists of four stages, removable, cropping, thinning, and normalization. This phase has been used to eliminate all the undesirable hair particles on the image lesion. The cropped image transforms into frequency domain coefficients using discrete cosine transform (DCT), discrete wavelet transform (DWT), and gradient transform for sub-band images to extract its feature. The statistical feature extraction is implemented to minimize the size of data for ANN training. The experimental analysis used dataset ISIC 2018 consisting of seven different types of dermoscopic images (this paper deals with four types only). For classification purposes, ANN was implemented and the accuracy obtained is about 88.98% for DWT, 85.44% for sub-band DCT, and 76.07% for sub-band gradient transform.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Skin cancers image classification using transformation and first order statistic features with artificial neural network classifier\",\"authors\":\"A. Alqaisi, Loay E. George\",\"doi\":\"10.11591/ijaas.v11.i3.pp232-241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Skin cancer is one of the most dangerous types of cancer. Some types of this cancer lead to death, so cancer must be discovered and indexed to avoid its spread through initial detection in the impulsive stage. This paper deals with the detection and indexing of different types of melanomas using an artificial neural network (ANN) depending on the international skin imaging collaboration (ISIC) 2018 dataset that was used. The pre-processing is the most important part because it formulates an image by insolated the cancer part from the skin image. It consists of four stages, removable, cropping, thinning, and normalization. This phase has been used to eliminate all the undesirable hair particles on the image lesion. The cropped image transforms into frequency domain coefficients using discrete cosine transform (DCT), discrete wavelet transform (DWT), and gradient transform for sub-band images to extract its feature. The statistical feature extraction is implemented to minimize the size of data for ANN training. The experimental analysis used dataset ISIC 2018 consisting of seven different types of dermoscopic images (this paper deals with four types only). For classification purposes, ANN was implemented and the accuracy obtained is about 88.98% for DWT, 85.44% for sub-band DCT, and 76.07% for sub-band gradient transform.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijaas.v11.i3.pp232-241\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijaas.v11.i3.pp232-241","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Skin cancers image classification using transformation and first order statistic features with artificial neural network classifier
Skin cancer is one of the most dangerous types of cancer. Some types of this cancer lead to death, so cancer must be discovered and indexed to avoid its spread through initial detection in the impulsive stage. This paper deals with the detection and indexing of different types of melanomas using an artificial neural network (ANN) depending on the international skin imaging collaboration (ISIC) 2018 dataset that was used. The pre-processing is the most important part because it formulates an image by insolated the cancer part from the skin image. It consists of four stages, removable, cropping, thinning, and normalization. This phase has been used to eliminate all the undesirable hair particles on the image lesion. The cropped image transforms into frequency domain coefficients using discrete cosine transform (DCT), discrete wavelet transform (DWT), and gradient transform for sub-band images to extract its feature. The statistical feature extraction is implemented to minimize the size of data for ANN training. The experimental analysis used dataset ISIC 2018 consisting of seven different types of dermoscopic images (this paper deals with four types only). For classification purposes, ANN was implemented and the accuracy obtained is about 88.98% for DWT, 85.44% for sub-band DCT, and 76.07% for sub-band gradient transform.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.