氢化钠热分解温度和速率的测定

M. Kawaguchi
{"title":"氢化钠热分解温度和速率的测定","authors":"M. Kawaguchi","doi":"10.1115/icone2020-16423","DOIUrl":null,"url":null,"abstract":"\n In decommissioning sodium-cooled fast reactors, the operators can be exposed to radiation during dismantling of cold trap equipment (C/T). The C/T is higher dose equipment because the C/T trapped tritium of fission products during the operation to purify the sodium coolant. In this study, thermal decomposition temperature and rate of sodium hydride (NaH) were measured as a fundamental research for development of “thermolysis” process prior to the dismantling.\n We measured the thermal decomposition temperature and rate using NaH powder (95.3%, Sigma-Aldrich) in alumina pan with ThermoGravimetry-Differential Thermal Analysis (TG-DTA) instrument (STA2500 Regulus, NETZSCH Japan). The heating rates of TG-DTA were set to β = 2.0, 5.0, 10.0 and 20.0 K/min. The DTA showed endothermic reaction and the TG showed two-steps mass-loss over 580K. This first-step mass-loss was consistent with change of chemical composition of the NaH with heating (NaH → Na+1/2H2). The thermal decomposition temperature and rate were obtained from the onset temperature of the mass-loss and the simplified Kissinger plots, respectively. Furthermore, we set to the thermal decomposition temperature of around 590K, and the mass-loss rates were measured. As a result, over 590K, the thermal decomposition occurred actively, and showed good agreement with the estimation curves obtained by the simplified Kissinger plots. The thermal decomposition rate strongly depended on the heating temperature.","PeriodicalId":63646,"journal":{"name":"核工程研究与设计","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of Thermal Decomposition Temperature and Rate of Sodium Hydride\",\"authors\":\"M. Kawaguchi\",\"doi\":\"10.1115/icone2020-16423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In decommissioning sodium-cooled fast reactors, the operators can be exposed to radiation during dismantling of cold trap equipment (C/T). The C/T is higher dose equipment because the C/T trapped tritium of fission products during the operation to purify the sodium coolant. In this study, thermal decomposition temperature and rate of sodium hydride (NaH) were measured as a fundamental research for development of “thermolysis” process prior to the dismantling.\\n We measured the thermal decomposition temperature and rate using NaH powder (95.3%, Sigma-Aldrich) in alumina pan with ThermoGravimetry-Differential Thermal Analysis (TG-DTA) instrument (STA2500 Regulus, NETZSCH Japan). The heating rates of TG-DTA were set to β = 2.0, 5.0, 10.0 and 20.0 K/min. The DTA showed endothermic reaction and the TG showed two-steps mass-loss over 580K. This first-step mass-loss was consistent with change of chemical composition of the NaH with heating (NaH → Na+1/2H2). The thermal decomposition temperature and rate were obtained from the onset temperature of the mass-loss and the simplified Kissinger plots, respectively. Furthermore, we set to the thermal decomposition temperature of around 590K, and the mass-loss rates were measured. As a result, over 590K, the thermal decomposition occurred actively, and showed good agreement with the estimation curves obtained by the simplified Kissinger plots. The thermal decomposition rate strongly depended on the heating temperature.\",\"PeriodicalId\":63646,\"journal\":{\"name\":\"核工程研究与设计\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"核工程研究与设计\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/icone2020-16423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"核工程研究与设计","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/icone2020-16423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在钠冷快堆退役过程中,在拆除冷阱设备(C/T)期间,操作人员可能会暴露在辐射中。C/T是高剂量设备,因为C/T在净化钠冷却剂的操作中捕获了裂变产物中的氚。在本研究中,测量了氢化钠(NaH)的热分解温度和速率,作为在拆解之前开发“热分解”工艺的基础研究。采用热重差热分析(TG-DTA)仪器(STA2500 Regulus, NETZSCH Japan)测量了naa粉(95.3%,Sigma-Aldrich)在氧化铝锅中的热分解温度和速率。TG-DTA升温速率设定为β = 2.0、5.0、10.0和20.0 K/min。DTA表现为吸热反应,TG表现为两步失重。第一步的质量损失与NaH的化学成分随加热的变化一致(NaH→Na+1/2H2)。热分解温度和速率分别由失重起始温度和简化Kissinger图求得。我们将热分解温度设定在590K左右,并测量了质量损失率。结果表明,在590K以上,热分解发生活跃,与简化Kissinger图估计曲线吻合较好。热分解速率与加热温度密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Thermal Decomposition Temperature and Rate of Sodium Hydride
In decommissioning sodium-cooled fast reactors, the operators can be exposed to radiation during dismantling of cold trap equipment (C/T). The C/T is higher dose equipment because the C/T trapped tritium of fission products during the operation to purify the sodium coolant. In this study, thermal decomposition temperature and rate of sodium hydride (NaH) were measured as a fundamental research for development of “thermolysis” process prior to the dismantling. We measured the thermal decomposition temperature and rate using NaH powder (95.3%, Sigma-Aldrich) in alumina pan with ThermoGravimetry-Differential Thermal Analysis (TG-DTA) instrument (STA2500 Regulus, NETZSCH Japan). The heating rates of TG-DTA were set to β = 2.0, 5.0, 10.0 and 20.0 K/min. The DTA showed endothermic reaction and the TG showed two-steps mass-loss over 580K. This first-step mass-loss was consistent with change of chemical composition of the NaH with heating (NaH → Na+1/2H2). The thermal decomposition temperature and rate were obtained from the onset temperature of the mass-loss and the simplified Kissinger plots, respectively. Furthermore, we set to the thermal decomposition temperature of around 590K, and the mass-loss rates were measured. As a result, over 590K, the thermal decomposition occurred actively, and showed good agreement with the estimation curves obtained by the simplified Kissinger plots. The thermal decomposition rate strongly depended on the heating temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
922
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信