斧的可用性和性能改进

Q4 Social Sciences
S. Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce, T. Gamblin, M. Taufer, Katherine E. Isaacs, A. Bhatele
{"title":"斧的可用性和性能改进","authors":"S. Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce, T. Gamblin, M. Taufer, Katherine E. Isaacs, A. Bhatele","doi":"10.1109/HUSTProtools51951.2020.00013","DOIUrl":null,"url":null,"abstract":"Performance analysis is critical for pinpointing bottlenecks in parallel applications. Several profilers exist to instrument parallel programs on HPC systems and gather performance data. Hatchet is an open-source Python library that can read profiling output of several tools, and enables the user to perform a variety of programmatic analyses on hierarchical performance profiles. In this paper, we augment Hatchet to support new features: a query language for representing call path patterns that can be used to filter a calling context tree, visualization support for displaying and interacting with performance profiles, and new operations for performing analyses on multiple datasets. Additionally, we present performance optimizations in Hatchet’s HPCToolkit reader and the unify operation to enable scalable analysis of large datasets.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"49 1","pages":"49-58"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Usability and Performance Improvements in Hatchet\",\"authors\":\"S. Brink, Ian Lumsden, Connor Scully-Allison, Katy Williams, Olga Pearce, T. Gamblin, M. Taufer, Katherine E. Isaacs, A. Bhatele\",\"doi\":\"10.1109/HUSTProtools51951.2020.00013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance analysis is critical for pinpointing bottlenecks in parallel applications. Several profilers exist to instrument parallel programs on HPC systems and gather performance data. Hatchet is an open-source Python library that can read profiling output of several tools, and enables the user to perform a variety of programmatic analyses on hierarchical performance profiles. In this paper, we augment Hatchet to support new features: a query language for representing call path patterns that can be used to filter a calling context tree, visualization support for displaying and interacting with performance profiles, and new operations for performing analyses on multiple datasets. Additionally, we present performance optimizations in Hatchet’s HPCToolkit reader and the unify operation to enable scalable analysis of large datasets.\",\"PeriodicalId\":38836,\"journal\":{\"name\":\"Meta: Avaliacao\",\"volume\":\"49 1\",\"pages\":\"49-58\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta: Avaliacao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUSTProtools51951.2020.00013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUSTProtools51951.2020.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 6

摘要

性能分析对于确定并行应用程序中的瓶颈至关重要。存在一些分析器来检测HPC系统上的并行程序并收集性能数据。Hatchet是一个开源Python库,可以读取多个工具的分析输出,并使用户能够对分层性能配置文件执行各种编程分析。在本文中,我们增强了Hatchet以支持新的特性:用于表示调用路径模式的查询语言,可用于过滤调用上下文树,用于显示和与性能配置文件交互的可视化支持,以及用于在多个数据集上执行分析的新操作。此外,我们还介绍了Hatchet的HPCToolkit阅读器的性能优化和统一操作,以实现对大型数据集的可扩展分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Usability and Performance Improvements in Hatchet
Performance analysis is critical for pinpointing bottlenecks in parallel applications. Several profilers exist to instrument parallel programs on HPC systems and gather performance data. Hatchet is an open-source Python library that can read profiling output of several tools, and enables the user to perform a variety of programmatic analyses on hierarchical performance profiles. In this paper, we augment Hatchet to support new features: a query language for representing call path patterns that can be used to filter a calling context tree, visualization support for displaying and interacting with performance profiles, and new operations for performing analyses on multiple datasets. Additionally, we present performance optimizations in Hatchet’s HPCToolkit reader and the unify operation to enable scalable analysis of large datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信