LOCAl:基于位置的社交网络的个性化缓存机制

Dimitrios Tomaras, Ioannis Boutsis, V. Kalogeraki, D. Gunopulos
{"title":"LOCAl:基于位置的社交网络的个性化缓存机制","authors":"Dimitrios Tomaras, Ioannis Boutsis, V. Kalogeraki, D. Gunopulos","doi":"10.1145/2996913.2996981","DOIUrl":null,"url":null,"abstract":"Recommending nearby Points of Interest (POI) has received growing interest in mobile location-based networks today, where users share content embedded with location information. In this work, we propose a novel caching framework to support personalised proactive caching for mobile location-based social networks. We propose \"LOCAI\", which uses a probabilistic approach in order to predict the POIs that users will access and retrieve the appropriate data objects that will fulfill user preferences. Our detailed experimental evaluation, using data from the Foursquare location-based social network, illustrates that LOCAI minimizes the user latency to retrieve the data objects they are interested in, is efficient and practical.","PeriodicalId":20525,"journal":{"name":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"LOCAl: a personalized cache mechanism for location-based social networks\",\"authors\":\"Dimitrios Tomaras, Ioannis Boutsis, V. Kalogeraki, D. Gunopulos\",\"doi\":\"10.1145/2996913.2996981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recommending nearby Points of Interest (POI) has received growing interest in mobile location-based networks today, where users share content embedded with location information. In this work, we propose a novel caching framework to support personalised proactive caching for mobile location-based social networks. We propose \\\"LOCAI\\\", which uses a probabilistic approach in order to predict the POIs that users will access and retrieve the appropriate data objects that will fulfill user preferences. Our detailed experimental evaluation, using data from the Foursquare location-based social network, illustrates that LOCAI minimizes the user latency to retrieve the data objects they are interested in, is efficient and practical.\",\"PeriodicalId\":20525,\"journal\":{\"name\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2996913.2996981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2996913.2996981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐附近的兴趣点(POI)在今天的基于移动位置的网络中受到越来越多的关注,用户可以分享嵌入位置信息的内容。在这项工作中,我们提出了一个新的缓存框架来支持基于移动位置的社交网络的个性化主动缓存。我们提出“LOCAI”,它使用概率方法来预测用户将访问的poi,并检索满足用户偏好的适当数据对象。我们详细的实验评估使用了基于Foursquare位置的社交网络的数据,表明LOCAI最大限度地减少了用户检索他们感兴趣的数据对象的延迟,是高效和实用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LOCAl: a personalized cache mechanism for location-based social networks
Recommending nearby Points of Interest (POI) has received growing interest in mobile location-based networks today, where users share content embedded with location information. In this work, we propose a novel caching framework to support personalised proactive caching for mobile location-based social networks. We propose "LOCAI", which uses a probabilistic approach in order to predict the POIs that users will access and retrieve the appropriate data objects that will fulfill user preferences. Our detailed experimental evaluation, using data from the Foursquare location-based social network, illustrates that LOCAI minimizes the user latency to retrieve the data objects they are interested in, is efficient and practical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信