级数范数的统一界及其算术应用

IF 0.8 3区 数学 Q3 MATHEMATICS
F. Waibel
{"title":"级数范数的统一界及其算术应用","authors":"F. Waibel","doi":"10.1017/S0305004122000081","DOIUrl":null,"url":null,"abstract":"Abstract We prove uniform bounds for the Petersson norm of the cuspidal part of the theta series. This gives an improved asymptotic formula for the number of representations by a quadratic form. As an application, we show that every integer \n$n \\neq 0,4,7 \\,(\\textrm{mod}\\ 8)$\n is represented as \n$n= x_1^2 + x_2^2 + x_3^3$\n for integers \n$x_1,x_2,x_3$\n such that the product \n$x_1x_2x_3$\n has at most 72 prime divisors.","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"32 1","pages":"669 - 691"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniform bounds for norms of theta series and arithmetic applications\",\"authors\":\"F. Waibel\",\"doi\":\"10.1017/S0305004122000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We prove uniform bounds for the Petersson norm of the cuspidal part of the theta series. This gives an improved asymptotic formula for the number of representations by a quadratic form. As an application, we show that every integer \\n$n \\\\neq 0,4,7 \\\\,(\\\\textrm{mod}\\\\ 8)$\\n is represented as \\n$n= x_1^2 + x_2^2 + x_3^3$\\n for integers \\n$x_1,x_2,x_3$\\n such that the product \\n$x_1x_2x_3$\\n has at most 72 prime divisors.\",\"PeriodicalId\":18320,\"journal\":{\"name\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"volume\":\"32 1\",\"pages\":\"669 - 691\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Proceedings of the Cambridge Philosophical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/S0305004122000081\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004122000081","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

摘要证明了theta级数的倒角部分的Petersson范数的一致界。给出了二次型表示次数的改进渐近公式。作为一个应用,我们证明了每一个整数$n \neq 0,4,7 \,(\textrm{mod}\ 8)$表示为$n= x_1^2 + x_2^2 + x_3^3$对于整数$x_1,x_2,x_3$,使得乘积$x_1x_2x_3$最多有72个质因数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform bounds for norms of theta series and arithmetic applications
Abstract We prove uniform bounds for the Petersson norm of the cuspidal part of the theta series. This gives an improved asymptotic formula for the number of representations by a quadratic form. As an application, we show that every integer $n \neq 0,4,7 \,(\textrm{mod}\ 8)$ is represented as $n= x_1^2 + x_2^2 + x_3^3$ for integers $x_1,x_2,x_3$ such that the product $x_1x_2x_3$ has at most 72 prime divisors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信