检验大维度相关性

Matthias Arnold, R. Weißbach
{"title":"检验大维度相关性","authors":"Matthias Arnold, R. Weißbach","doi":"10.17877/DE290R-267","DOIUrl":null,"url":null,"abstract":"This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.","PeriodicalId":10841,"journal":{"name":"CTIT technical reports series","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2007-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing large-dimensional correlation\",\"authors\":\"Matthias Arnold, R. Weißbach\",\"doi\":\"10.17877/DE290R-267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.\",\"PeriodicalId\":10841,\"journal\":{\"name\":\"CTIT technical reports series\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CTIT technical reports series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17877/DE290R-267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CTIT technical reports series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17877/DE290R-267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了在相关矩阵比样本量大的情况下的零相关检验。检验统计量是样本中相关系数的平方和。当变量数和样本量趋近于无穷时,我们推导出了它的极限零分布。蒙特卡罗模拟发现有限样本的大小和功率都是合适的。我们将测试应用于德国经济不同部门的违约率向量,这是投资组合信用风险的一个风险因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing large-dimensional correlation
This paper introduces a test for zero correlation in situations where the correlation matrix is large compared to the sample size. The test statistic is the sum of the squared correlation coefficients in the sample. We derive its limiting null distribution as the number of variables as well as the sample size converge to infinity. A Monte Carlo simulation finds both size and power for finite samples to be suitable. We apply the test to the vector of default rates, a risk factor in portfolio credit risk, in different sectors of the German economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信