深度学习应用于从高分辨率视频中识别人类动作,以识别可疑动作

H. Secchi, Silvio Antonio Carro
{"title":"深度学习应用于从高分辨率视频中识别人类动作,以识别可疑动作","authors":"H. Secchi, Silvio Antonio Carro","doi":"10.5747/ce.2022.v14.n1.e386","DOIUrl":null,"url":null,"abstract":"The use of computer vision plays an important role for security purposes. However, the combination with deep learning techniques and convolutional neural networks are still little explored because they demand a lot of computational processing capacity. This work aims to combine these techniques in order to generate an algorithm that is capable of identifying and tracking individuals in videos, in addition to monitoring their actions with the purpose of identifying movements that could signify a criminal act, using the YOLO algorithm for identification, Kalman filter for tracking and BlazePose for movement identification. This work resulted in a 95% accuracy rate on well-defined videos and an 81% accuracy rate using video from the most popular security cameras.","PeriodicalId":30414,"journal":{"name":"Colloquium Exactarum","volume":"103 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"USO DE DEEP LEARNING APLICADO NO RECONHECIMENTO DE AÇÕES HUMANAS A PARTIR DE VÍDEOS EM ALTA RESOLUÇÃO VISANDO IDENTIFICAR MOVIMENTOS SUSPEITOS\",\"authors\":\"H. Secchi, Silvio Antonio Carro\",\"doi\":\"10.5747/ce.2022.v14.n1.e386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of computer vision plays an important role for security purposes. However, the combination with deep learning techniques and convolutional neural networks are still little explored because they demand a lot of computational processing capacity. This work aims to combine these techniques in order to generate an algorithm that is capable of identifying and tracking individuals in videos, in addition to monitoring their actions with the purpose of identifying movements that could signify a criminal act, using the YOLO algorithm for identification, Kalman filter for tracking and BlazePose for movement identification. This work resulted in a 95% accuracy rate on well-defined videos and an 81% accuracy rate using video from the most popular security cameras.\",\"PeriodicalId\":30414,\"journal\":{\"name\":\"Colloquium Exactarum\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloquium Exactarum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5747/ce.2022.v14.n1.e386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium Exactarum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5747/ce.2022.v14.n1.e386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉的使用在安全方面起着重要的作用。然而,深度学习技术和卷积神经网络的结合仍然很少被探索,因为它们需要大量的计算处理能力。这项工作旨在结合这些技术,以生成一种算法,能够识别和跟踪视频中的个人,除了监控他们的行为,以识别可能表示犯罪行为的运动,使用YOLO算法进行识别,卡尔曼滤波器进行跟踪,BlazePose进行运动识别。这项工作的结果是,在定义明确的视频上,准确率达到95%,在使用最流行的安全摄像头的视频时,准确率达到81%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
USO DE DEEP LEARNING APLICADO NO RECONHECIMENTO DE AÇÕES HUMANAS A PARTIR DE VÍDEOS EM ALTA RESOLUÇÃO VISANDO IDENTIFICAR MOVIMENTOS SUSPEITOS
The use of computer vision plays an important role for security purposes. However, the combination with deep learning techniques and convolutional neural networks are still little explored because they demand a lot of computational processing capacity. This work aims to combine these techniques in order to generate an algorithm that is capable of identifying and tracking individuals in videos, in addition to monitoring their actions with the purpose of identifying movements that could signify a criminal act, using the YOLO algorithm for identification, Kalman filter for tracking and BlazePose for movement identification. This work resulted in a 95% accuracy rate on well-defined videos and an 81% accuracy rate using video from the most popular security cameras.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
17
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信