虚拟化数据中心的收益驱动资源分配

Sajib Kundu, R. Rangaswami, Ming Zhao, Ajay Gulati, K. Dutta
{"title":"虚拟化数据中心的收益驱动资源分配","authors":"Sajib Kundu, R. Rangaswami, Ming Zhao, Ajay Gulati, K. Dutta","doi":"10.1109/ICAC.2015.40","DOIUrl":null,"url":null,"abstract":"The increasing VM density in cloud hosting services makes careful management of physical resources such as CPU, memory, and I/O bandwidth within individual virtualized servers a priority. To maximize cost-efficiency, resource management needs to be coupled with the revenue generating mechanisms of cloud hosting: the service level agreements (SLAs) of hosted client applications. In this paper, we develop a server resource management framework that reduces data center resource management complexity substantially. Our solution implements revenue-driven dynamic resource allocation which continuously steers the resource distribution across hosted VMs within a server such as to maximize the SLA-generated revenue from the server. Our experimental evaluation for a VMware ESX hyper visor highlights the importance of both resource isolation and resource sharing across VMs. The empirical data shows a 7%-54% increase in total revenue generated for a mix of 10-25 VMs hosting either similar or diverse workloads when compared to using the currently available resource distribution mechanisms in ESX.","PeriodicalId":6643,"journal":{"name":"2015 IEEE International Conference on Autonomic Computing","volume":"36 1","pages":"197-206"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Revenue Driven Resource Allocation for Virtualized Data Centers\",\"authors\":\"Sajib Kundu, R. Rangaswami, Ming Zhao, Ajay Gulati, K. Dutta\",\"doi\":\"10.1109/ICAC.2015.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing VM density in cloud hosting services makes careful management of physical resources such as CPU, memory, and I/O bandwidth within individual virtualized servers a priority. To maximize cost-efficiency, resource management needs to be coupled with the revenue generating mechanisms of cloud hosting: the service level agreements (SLAs) of hosted client applications. In this paper, we develop a server resource management framework that reduces data center resource management complexity substantially. Our solution implements revenue-driven dynamic resource allocation which continuously steers the resource distribution across hosted VMs within a server such as to maximize the SLA-generated revenue from the server. Our experimental evaluation for a VMware ESX hyper visor highlights the importance of both resource isolation and resource sharing across VMs. The empirical data shows a 7%-54% increase in total revenue generated for a mix of 10-25 VMs hosting either similar or diverse workloads when compared to using the currently available resource distribution mechanisms in ESX.\",\"PeriodicalId\":6643,\"journal\":{\"name\":\"2015 IEEE International Conference on Autonomic Computing\",\"volume\":\"36 1\",\"pages\":\"197-206\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Autonomic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAC.2015.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Autonomic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAC.2015.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

云托管服务中不断增加的VM密度使得对物理资源(如CPU、内存和单个虚拟化服务器中的I/O带宽)的仔细管理成为一个优先事项。为了最大限度地提高成本效益,资源管理需要与云托管的创收机制相结合:托管客户端应用程序的服务水平协议(sla)。本文开发了一个服务器资源管理框架,大大降低了数据中心资源管理的复杂性。我们的解决方案实现了收入驱动的动态资源分配,它持续地引导服务器内托管虚拟机之间的资源分配,例如最大化服务器上sla生成的收入。我们对VMware ESX hypervisor的实验评估强调了资源隔离和跨vm资源共享的重要性。经验数据显示,与使用ESX中当前可用的资源分配机制相比,托管相似或不同工作负载的10-25个虚拟机的组合产生的总收入增加了7%-54%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revenue Driven Resource Allocation for Virtualized Data Centers
The increasing VM density in cloud hosting services makes careful management of physical resources such as CPU, memory, and I/O bandwidth within individual virtualized servers a priority. To maximize cost-efficiency, resource management needs to be coupled with the revenue generating mechanisms of cloud hosting: the service level agreements (SLAs) of hosted client applications. In this paper, we develop a server resource management framework that reduces data center resource management complexity substantially. Our solution implements revenue-driven dynamic resource allocation which continuously steers the resource distribution across hosted VMs within a server such as to maximize the SLA-generated revenue from the server. Our experimental evaluation for a VMware ESX hyper visor highlights the importance of both resource isolation and resource sharing across VMs. The empirical data shows a 7%-54% increase in total revenue generated for a mix of 10-25 VMs hosting either similar or diverse workloads when compared to using the currently available resource distribution mechanisms in ESX.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信