升级质量-弹簧振荡系统扩展正弦和余弦函数的导数

Q3 Mathematics
Luis Teia
{"title":"升级质量-弹簧振荡系统扩展正弦和余弦函数的导数","authors":"Luis Teia","doi":"10.5539/jmr.v15n1p57","DOIUrl":null,"url":null,"abstract":"Derivatives in trigonometry have always been defined in orthogonal contexts (i.e., where the y-axis is set perpendicular to the x-axis). Within the context of trigonometric, the present work expands the concept of derivative (operating by the principle of 90 degrees phase shift when applicable to sine and cosine functions) to the realm where the y-axis is at a variable angle $\\gamma$ to the x-axis (i.e., non-orthogonal systems). This gives rise to the concept of the \\emph{gamma derivative} --- which expands the classical derivative to impart phase shifts of $\\gamma$ degrees. Hence, the ordinary derivative (with respect to $\\alpha$) or $d/d \\alpha$ is a particular case of the more general \\emph{gamma derivative} or $d_\\gamma/d_\\gamma \\alpha$. Formula for the $n^{th}$ gamma derivative of the extended sine and cosine functions are defined. For applied mathematics, the gamma derivatives of the extended sine function $\\sin^*(\\alpha,\\gamma)$ and cosine function $\\cos^*(\\alpha,\\gamma)$ determine the extended governing equation of the energy-coupled mass-spring oscillatory system, and by extended analogy that of the electrical LC (Inductance-Capacitance) circuit.","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gamma Derivatives of the Extended Sine and Cosine Functions for the Upgraded Mass-Spring Oscillatory System\",\"authors\":\"Luis Teia\",\"doi\":\"10.5539/jmr.v15n1p57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Derivatives in trigonometry have always been defined in orthogonal contexts (i.e., where the y-axis is set perpendicular to the x-axis). Within the context of trigonometric, the present work expands the concept of derivative (operating by the principle of 90 degrees phase shift when applicable to sine and cosine functions) to the realm where the y-axis is at a variable angle $\\\\gamma$ to the x-axis (i.e., non-orthogonal systems). This gives rise to the concept of the \\\\emph{gamma derivative} --- which expands the classical derivative to impart phase shifts of $\\\\gamma$ degrees. Hence, the ordinary derivative (with respect to $\\\\alpha$) or $d/d \\\\alpha$ is a particular case of the more general \\\\emph{gamma derivative} or $d_\\\\gamma/d_\\\\gamma \\\\alpha$. Formula for the $n^{th}$ gamma derivative of the extended sine and cosine functions are defined. For applied mathematics, the gamma derivatives of the extended sine function $\\\\sin^*(\\\\alpha,\\\\gamma)$ and cosine function $\\\\cos^*(\\\\alpha,\\\\gamma)$ determine the extended governing equation of the energy-coupled mass-spring oscillatory system, and by extended analogy that of the electrical LC (Inductance-Capacitance) circuit.\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n1p57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n1p57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

三角学中的导数一直是在正交的情况下定义的(即,y轴垂直于x轴)。在三角函数的背景下,本工作将导数的概念(适用于正弦和余弦函数时通过90度相移原理操作)扩展到y轴与x轴(即非正交系统)处于可变角度$\gamma$的领域。这就产生了\emph{伽马导数}的概念——它扩展了经典导数,赋予$\gamma$度的相移。因此,普通导数(关于$\alpha$)或$d/d \alpha$是更一般的\emph{γ导数}或$d_\gamma/d_\gamma \alpha$的特殊情况。定义了扩展正弦和余弦函数的$n^{th}$导数公式。在应用数学中,扩展正弦函数$\sin^*(\alpha,\gamma)$和余弦函数$\cos^*(\alpha,\gamma)$的伽马导数确定了能量耦合质量-弹簧振荡系统的扩展控制方程,并通过扩展类比确定了电气LC(电感-电容)电路的扩展控制方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gamma Derivatives of the Extended Sine and Cosine Functions for the Upgraded Mass-Spring Oscillatory System
Derivatives in trigonometry have always been defined in orthogonal contexts (i.e., where the y-axis is set perpendicular to the x-axis). Within the context of trigonometric, the present work expands the concept of derivative (operating by the principle of 90 degrees phase shift when applicable to sine and cosine functions) to the realm where the y-axis is at a variable angle $\gamma$ to the x-axis (i.e., non-orthogonal systems). This gives rise to the concept of the \emph{gamma derivative} --- which expands the classical derivative to impart phase shifts of $\gamma$ degrees. Hence, the ordinary derivative (with respect to $\alpha$) or $d/d \alpha$ is a particular case of the more general \emph{gamma derivative} or $d_\gamma/d_\gamma \alpha$. Formula for the $n^{th}$ gamma derivative of the extended sine and cosine functions are defined. For applied mathematics, the gamma derivatives of the extended sine function $\sin^*(\alpha,\gamma)$ and cosine function $\cos^*(\alpha,\gamma)$ determine the extended governing equation of the energy-coupled mass-spring oscillatory system, and by extended analogy that of the electrical LC (Inductance-Capacitance) circuit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信