G. Onwukwe, M. K. Koski, P. Pihko, W. Schmitz, Rik K. Wierenga
{"title":"酵母过氧化物酶体Δ(3),Δ(2)-烯酰辅酶a异构酶与酰基辅酶a底物类似物络合的结构:氢键网络对催化碱和氧阴离子孔反应性的重要性。","authors":"G. Onwukwe, M. K. Koski, P. Pihko, W. Schmitz, Rik K. Wierenga","doi":"10.1107/S139900471501559X","DOIUrl":null,"url":null,"abstract":"Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.","PeriodicalId":6895,"journal":{"name":"Acta Crystallographica Section D: Biological Crystallography","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Structures of yeast peroxisomal Δ(3),Δ(2)-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks for the reactivity of the catalytic base and the oxyanion hole.\",\"authors\":\"G. Onwukwe, M. K. Koski, P. Pihko, W. Schmitz, Rik K. Wierenga\",\"doi\":\"10.1107/S139900471501559X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.\",\"PeriodicalId\":6895,\"journal\":{\"name\":\"Acta Crystallographica Section D: Biological Crystallography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Crystallographica Section D: Biological Crystallography\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1107/S139900471501559X\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Crystallographica Section D: Biological Crystallography","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S139900471501559X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Structures of yeast peroxisomal Δ(3),Δ(2)-enoyl-CoA isomerase complexed with acyl-CoA substrate analogues: the importance of hydrogen-bond networks for the reactivity of the catalytic base and the oxyanion hole.
Δ(3),Δ(2)-Enoyl-CoA isomerases (ECIs) catalyze the shift of a double bond from 3Z- or 3E-enoyl-CoA to 2E-enoyl-CoA. ECIs are members of the crotonase superfamily. The crotonase framework is used by many enzymes to catalyze a wide range of reactions on acyl-CoA thioesters. The thioester O atom is bound in a conserved oxyanion hole. Here, the mode of binding of acyl-CoA substrate analogues to peroxisomal Saccharomyces cerevisiae ECI (ScECI2) is described. The best defined part of the bound acyl-CoA molecules is the 3',5'-diphosphate-adenosine moiety, which interacts with residues of loop 1 and loop 2, whereas the pantetheine part is the least well defined. The catalytic base, Glu158, is hydrogen-bonded to the Asn101 side chain and is further hydrogen-bonded to the side chain of Arg100 in the apo structure. Arg100 is completely buried in the apo structure and a conformational change of the Arg100 side chain appears to be important for substrate binding and catalysis. The oxyanion hole is formed by the NH groups of Ala70 (loop 2) and Leu126 (helix 3). The O atoms of the corresponding peptide units, Gly69 O and Gly125 O, are both part of extensive hydrogen-bond networks. These hydrogen-bond networks are a conserved feature of the crotonase oxyanion hole and their importance for catalysis is discussed.
期刊介绍:
Acta Crystallographica Section D welcomes the submission of articles covering any aspect of structural biology, with a particular emphasis on the structures of biological macromolecules or the methods used to determine them.
Reports on new structures of biological importance may address the smallest macromolecules to the largest complex molecular machines. These structures may have been determined using any structural biology technique including crystallography, NMR, cryoEM and/or other techniques. The key criterion is that such articles must present significant new insights into biological, chemical or medical sciences. The inclusion of complementary data that support the conclusions drawn from the structural studies (such as binding studies, mass spectrometry, enzyme assays, or analysis of mutants or other modified forms of biological macromolecule) is encouraged.
Methods articles may include new approaches to any aspect of biological structure determination or structure analysis but will only be accepted where they focus on new methods that are demonstrated to be of general applicability and importance to structural biology. Articles describing particularly difficult problems in structural biology are also welcomed, if the analysis would provide useful insights to others facing similar problems.