有限视界半马尔可夫决策过程的指数代价最优性

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, CYBERNETICS
Haifeng Huo, Xian Wen
{"title":"有限视界半马尔可夫决策过程的指数代价最优性","authors":"Haifeng Huo, Xian Wen","doi":"10.14736/kyb-2022-3-0301","DOIUrl":null,"url":null,"abstract":"This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the (cid:15) -optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"106 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The exponential cost optimality for finite horizon semi-Markov decision processes\",\"authors\":\"Haifeng Huo, Xian Wen\",\"doi\":\"10.14736/kyb-2022-3-0301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the (cid:15) -optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2022-3-0301\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2022-3-0301","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 1

摘要

研究有限视界半马尔可夫决策过程的指数代价最优性问题。目标是在有限范围内的所有策略集合中计算出具有最小指数成本的最优策略。首先,在标准正则和紧连续条件下,建立了最优性方程,利用最小非负解方法证明了值函数是最优性方程的唯一解和最优策略的存在性。其次,我们建立了一种新的值迭代算法来计算值函数和(cid:15)最优策略。最后,我们给出了一个可计算的机器维护系统来说明算法的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exponential cost optimality for finite horizon semi-Markov decision processes
This paper considers an exponential cost optimality problem for finite horizon semi-Markov decision processes (SMDPs). The objective is to calculate an optimal policy with minimal exponential costs over the full set of policies in a finite horizon. First, under the standard regular and compact-continuity conditions, we establish the optimality equation, prove that the value function is the unique solution of the optimality equation and the existence of an optimal policy by using the minimum nonnegative solution approach. Second, we establish a new value iteration algorithm to calculate both the value function and the (cid:15) -optimal policy. Finally, we give a computable machine maintenance system to illustrate the convergence of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kybernetika
Kybernetika 工程技术-计算机:控制论
CiteScore
1.30
自引率
20.00%
发文量
38
审稿时长
6 months
期刊介绍: Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences. Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信