基于内存的体系结构中的自适应过滤

C. Radhakrishnan, Sujan Kumar Gonugondla
{"title":"基于内存的体系结构中的自适应过滤","authors":"C. Radhakrishnan, Sujan Kumar Gonugondla","doi":"10.1109/IEEECONF44664.2019.9048764","DOIUrl":null,"url":null,"abstract":"Deep in memory architecture (DIMA) has been proposed as a means to improve energy efficiency and latency over conventional digital architectures. DIMA reads multiple bits per bit-line (BL) in each cycle, and performs mixed-signal processing at the periphery of the bit cell array (BCA). While DIMA provides considerable performance benefits, the multi-row read is a non-linear operation. This work studies the impact of non-linearity and variations on stochastic gradient descent (SGD). The analysis is carried out in the context of LMS adaptive filters. The steady state MSE of the filter remains unaffected while convergence rate depends parameters associated with DIMA read operation. The insights are useful in context of learning systems employing gradient descent techniques.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"105 1","pages":"784-788"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive Filtering in In-Memory-Based Architectures\",\"authors\":\"C. Radhakrishnan, Sujan Kumar Gonugondla\",\"doi\":\"10.1109/IEEECONF44664.2019.9048764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep in memory architecture (DIMA) has been proposed as a means to improve energy efficiency and latency over conventional digital architectures. DIMA reads multiple bits per bit-line (BL) in each cycle, and performs mixed-signal processing at the periphery of the bit cell array (BCA). While DIMA provides considerable performance benefits, the multi-row read is a non-linear operation. This work studies the impact of non-linearity and variations on stochastic gradient descent (SGD). The analysis is carried out in the context of LMS adaptive filters. The steady state MSE of the filter remains unaffected while convergence rate depends parameters associated with DIMA read operation. The insights are useful in context of learning systems employing gradient descent techniques.\",\"PeriodicalId\":6684,\"journal\":{\"name\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"volume\":\"105 1\",\"pages\":\"784-788\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 53rd Asilomar Conference on Signals, Systems, and Computers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEECONF44664.2019.9048764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9048764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度内存架构(DIMA)作为一种提高能源效率和延迟的方法而被提出。DIMA在每个周期中每比特线(BL)读取多个比特,并在比特单元阵列(BCA)的外围执行混合信号处理。虽然DIMA提供了相当大的性能优势,但多行读取是一个非线性操作。本文研究了非线性和变化对随机梯度下降(SGD)的影响。分析是在LMS自适应滤波器的背景下进行的。当收敛速率取决于与DIMA读取操作相关的参数时,滤波器的稳态MSE不受影响。这些见解在使用梯度下降技术的学习系统的背景下是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Filtering in In-Memory-Based Architectures
Deep in memory architecture (DIMA) has been proposed as a means to improve energy efficiency and latency over conventional digital architectures. DIMA reads multiple bits per bit-line (BL) in each cycle, and performs mixed-signal processing at the periphery of the bit cell array (BCA). While DIMA provides considerable performance benefits, the multi-row read is a non-linear operation. This work studies the impact of non-linearity and variations on stochastic gradient descent (SGD). The analysis is carried out in the context of LMS adaptive filters. The steady state MSE of the filter remains unaffected while convergence rate depends parameters associated with DIMA read operation. The insights are useful in context of learning systems employing gradient descent techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信