面向平流层自主飞行:固定翼平台通用全球系统识别框架

Jongseo Lee, T. Muskardin, Cristina Ruiz Pacz, P. Oettershagen, Thomas Stastny, Inkyu Sa, R. Siegwart, K. Kondak
{"title":"面向平流层自主飞行:固定翼平台通用全球系统识别框架","authors":"Jongseo Lee, T. Muskardin, Cristina Ruiz Pacz, P. Oettershagen, Thomas Stastny, Inkyu Sa, R. Siegwart, K. Kondak","doi":"10.1109/IROS.2018.8594126","DOIUrl":null,"url":null,"abstract":"System identification of High Altitude Long Endurance fixed-wing aerial vehicles is challenging as its operating flight envelope covers wide ranges of altitudes and Mach numbers. We present a new global system identification framework geared towards such fixed-wing aerial platforms where the aim is to build a global aerodynamic model without many repetitions of local system identification procedures or the use of any aerodynamic database. Instead we apply parameter identification techniques to virtually created system identification data and update the identified parameters with available flight test data. The proposed framework was evaluated using data set outside the flight envelope of the available flight test data, i.e. at different airspeeds considering both interpolation and extrapolation scenarios. The error analysis has shown that the obtained longitudinal aerodynamic model can accurately predict the pitch rate and pitch angle, mostly within a tolerance of $\\pm \\pmb{1.5}$ degrees/s and $\\pm \\pmb{2}$ degrees respectively. Such a cost and time efficient model development framework enables high fidelity simulation and precise control which ultimately leads to higher success rates in autonomous missions.","PeriodicalId":6640,"journal":{"name":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"339 1","pages":"6233-6240"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Towards Autonomous Stratospheric Flight: A Generic Global System Identification Framework for Fixed-Wing Platforms\",\"authors\":\"Jongseo Lee, T. Muskardin, Cristina Ruiz Pacz, P. Oettershagen, Thomas Stastny, Inkyu Sa, R. Siegwart, K. Kondak\",\"doi\":\"10.1109/IROS.2018.8594126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"System identification of High Altitude Long Endurance fixed-wing aerial vehicles is challenging as its operating flight envelope covers wide ranges of altitudes and Mach numbers. We present a new global system identification framework geared towards such fixed-wing aerial platforms where the aim is to build a global aerodynamic model without many repetitions of local system identification procedures or the use of any aerodynamic database. Instead we apply parameter identification techniques to virtually created system identification data and update the identified parameters with available flight test data. The proposed framework was evaluated using data set outside the flight envelope of the available flight test data, i.e. at different airspeeds considering both interpolation and extrapolation scenarios. The error analysis has shown that the obtained longitudinal aerodynamic model can accurately predict the pitch rate and pitch angle, mostly within a tolerance of $\\\\pm \\\\pmb{1.5}$ degrees/s and $\\\\pm \\\\pmb{2}$ degrees respectively. Such a cost and time efficient model development framework enables high fidelity simulation and precise control which ultimately leads to higher success rates in autonomous missions.\",\"PeriodicalId\":6640,\"journal\":{\"name\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"339 1\",\"pages\":\"6233-6240\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2018.8594126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2018.8594126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

高空长航时固定翼飞行器的飞行包线覆盖高度和马赫数范围广,系统识别具有挑战性。我们提出了一个新的全球系统识别框架,面向这种固定翼空中平台,其目的是建立一个全球空气动力学模型,而不需要重复许多局部系统识别程序或使用任何空气动力学数据库。相反,我们将参数识别技术应用于虚拟创建的系统识别数据,并用可用的飞行测试数据更新已识别的参数。使用可用飞行测试数据的飞行包线外的数据集,即在考虑插值和外推两种场景的不同空速下,对所提出的框架进行了评估。误差分析表明,所得到的纵向气动模型能准确预测俯仰速率和俯仰角,误差范围分别在$\pm \pmb{1.5}$°/s和$\pm \pmb{2}$°。这种成本和时间效率高的模型开发框架能够实现高保真仿真和精确控制,最终导致自主任务的更高成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Autonomous Stratospheric Flight: A Generic Global System Identification Framework for Fixed-Wing Platforms
System identification of High Altitude Long Endurance fixed-wing aerial vehicles is challenging as its operating flight envelope covers wide ranges of altitudes and Mach numbers. We present a new global system identification framework geared towards such fixed-wing aerial platforms where the aim is to build a global aerodynamic model without many repetitions of local system identification procedures or the use of any aerodynamic database. Instead we apply parameter identification techniques to virtually created system identification data and update the identified parameters with available flight test data. The proposed framework was evaluated using data set outside the flight envelope of the available flight test data, i.e. at different airspeeds considering both interpolation and extrapolation scenarios. The error analysis has shown that the obtained longitudinal aerodynamic model can accurately predict the pitch rate and pitch angle, mostly within a tolerance of $\pm \pmb{1.5}$ degrees/s and $\pm \pmb{2}$ degrees respectively. Such a cost and time efficient model development framework enables high fidelity simulation and precise control which ultimately leads to higher success rates in autonomous missions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信