{"title":"机械臂动力学分析中的数值仿真与联合仿真","authors":"Dariusz Baran, W. Lisowski","doi":"10.7494/MECH.2013.32.4.129","DOIUrl":null,"url":null,"abstract":"Application of general purpose computing environments to analysis of manipulators’ dynamics gives ability to select elastically the model structure and analysis algorithms, as well as full access to the intermediate results, however, it often requires introduction of various simplifications of the model under consideration. The alternative approach consists in application of the specialized software packages that allow the use of more sophisticated models, but at the cost of restricted access to the intermediate results as well as the limited range of possible modifications of models and solution algorithms. The authors focused on application of the co-simulation technique in analysis of manipulators’ dynamics. Co-simulation consists in application of specialized software packages to formulation of the dynamic model. Next, the model is simulated with use of a general purpose computing environment and co-operating specialized software package. The authors used Matlab/Simulink computing environment and MD ADAMS software package. The paper presents comparison of results, problems of application, as well as remarks on educational applicability of manipulator dynamics analysis with use of the simulation and the co-simulation techniques. Two examples of a manipulator dynamics modelling were considered. One example with a considerably simplified mass spatial distribution, and another one with a mass distribution corresponding to a real commercial manipulator. The achieved analysis results confirmed that application of the co-simulation technique eases the use of complex models in analysis of manipulator dynamics with use of the general purpose computing environments.","PeriodicalId":38333,"journal":{"name":"International Journal of Mechanics and Control","volume":"50 1","pages":"129"},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"NUMERICAL SIMULATION AND CO-SIMULATION IN ANALYSIS OF MANIPULATORS’ DYNAMICS\",\"authors\":\"Dariusz Baran, W. Lisowski\",\"doi\":\"10.7494/MECH.2013.32.4.129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Application of general purpose computing environments to analysis of manipulators’ dynamics gives ability to select elastically the model structure and analysis algorithms, as well as full access to the intermediate results, however, it often requires introduction of various simplifications of the model under consideration. The alternative approach consists in application of the specialized software packages that allow the use of more sophisticated models, but at the cost of restricted access to the intermediate results as well as the limited range of possible modifications of models and solution algorithms. The authors focused on application of the co-simulation technique in analysis of manipulators’ dynamics. Co-simulation consists in application of specialized software packages to formulation of the dynamic model. Next, the model is simulated with use of a general purpose computing environment and co-operating specialized software package. The authors used Matlab/Simulink computing environment and MD ADAMS software package. The paper presents comparison of results, problems of application, as well as remarks on educational applicability of manipulator dynamics analysis with use of the simulation and the co-simulation techniques. Two examples of a manipulator dynamics modelling were considered. One example with a considerably simplified mass spatial distribution, and another one with a mass distribution corresponding to a real commercial manipulator. The achieved analysis results confirmed that application of the co-simulation technique eases the use of complex models in analysis of manipulator dynamics with use of the general purpose computing environments.\",\"PeriodicalId\":38333,\"journal\":{\"name\":\"International Journal of Mechanics and Control\",\"volume\":\"50 1\",\"pages\":\"129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanics and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/MECH.2013.32.4.129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/MECH.2013.32.4.129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
NUMERICAL SIMULATION AND CO-SIMULATION IN ANALYSIS OF MANIPULATORS’ DYNAMICS
Application of general purpose computing environments to analysis of manipulators’ dynamics gives ability to select elastically the model structure and analysis algorithms, as well as full access to the intermediate results, however, it often requires introduction of various simplifications of the model under consideration. The alternative approach consists in application of the specialized software packages that allow the use of more sophisticated models, but at the cost of restricted access to the intermediate results as well as the limited range of possible modifications of models and solution algorithms. The authors focused on application of the co-simulation technique in analysis of manipulators’ dynamics. Co-simulation consists in application of specialized software packages to formulation of the dynamic model. Next, the model is simulated with use of a general purpose computing environment and co-operating specialized software package. The authors used Matlab/Simulink computing environment and MD ADAMS software package. The paper presents comparison of results, problems of application, as well as remarks on educational applicability of manipulator dynamics analysis with use of the simulation and the co-simulation techniques. Two examples of a manipulator dynamics modelling were considered. One example with a considerably simplified mass spatial distribution, and another one with a mass distribution corresponding to a real commercial manipulator. The achieved analysis results confirmed that application of the co-simulation technique eases the use of complex models in analysis of manipulator dynamics with use of the general purpose computing environments.