适形分数高斯超几何函数的进一步研究

M. Abul-Ez, M. Zayed, Ali Youssef
{"title":"适形分数高斯超几何函数的进一步研究","authors":"M. Abul-Ez, M. Zayed, Ali Youssef","doi":"10.3934/math.2021588","DOIUrl":null,"url":null,"abstract":"This paper presents a somewhat exhaustive study on the conformable fractional Gauss hypergeometric function (CFGHF). We start by solving the conformable fractional Gauss hypergeometric equation (CFGHE) about the fractional regular singular points $x=1$ and $x=\\infty$. Next, various generating functions of the CFGHF are established. We also develop some differential forms for the CFGHF. Subsequently, differential operators and the contiguous relations are reported. Furthermore, we introduce the conformable fractional integral representation and the fractional Laplace transform of CFGHF. As an application, and after making a suitable change of the independent variable, we provide general solutions of some known conformable fractional differential equations, which could be written by means of the CFGHF.","PeriodicalId":8451,"journal":{"name":"arXiv: Classical Analysis and ODEs","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Further study on the conformable fractional Gauss hypergeometric function\",\"authors\":\"M. Abul-Ez, M. Zayed, Ali Youssef\",\"doi\":\"10.3934/math.2021588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a somewhat exhaustive study on the conformable fractional Gauss hypergeometric function (CFGHF). We start by solving the conformable fractional Gauss hypergeometric equation (CFGHE) about the fractional regular singular points $x=1$ and $x=\\\\infty$. Next, various generating functions of the CFGHF are established. We also develop some differential forms for the CFGHF. Subsequently, differential operators and the contiguous relations are reported. Furthermore, we introduce the conformable fractional integral representation and the fractional Laplace transform of CFGHF. As an application, and after making a suitable change of the independent variable, we provide general solutions of some known conformable fractional differential equations, which could be written by means of the CFGHF.\",\"PeriodicalId\":8451,\"journal\":{\"name\":\"arXiv: Classical Analysis and ODEs\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Classical Analysis and ODEs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/math.2021588\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Classical Analysis and ODEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.2021588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对符合分数高斯超几何函数(CFGHF)进行了较为详尽的研究。首先求解关于分数阶正则奇点$x=1$和$x=\infty$的符合分数阶高斯超几何方程(CFGHE)。其次,建立了CFGHF的各种生成函数。我们还开发了CFGHF的一些微分形式。随后,给出了微分算子和连续关系。进一步介绍了CFGHF的符合分数阶积分表示和分数阶拉普拉斯变换。作为应用,在适当地改变自变量后,我们给出了一些已知的符合的分数阶微分方程的一般解,这些解可以用CFGHF来表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Further study on the conformable fractional Gauss hypergeometric function
This paper presents a somewhat exhaustive study on the conformable fractional Gauss hypergeometric function (CFGHF). We start by solving the conformable fractional Gauss hypergeometric equation (CFGHE) about the fractional regular singular points $x=1$ and $x=\infty$. Next, various generating functions of the CFGHF are established. We also develop some differential forms for the CFGHF. Subsequently, differential operators and the contiguous relations are reported. Furthermore, we introduce the conformable fractional integral representation and the fractional Laplace transform of CFGHF. As an application, and after making a suitable change of the independent variable, we provide general solutions of some known conformable fractional differential equations, which could be written by means of the CFGHF.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信