理想可压缩流体稳态三维流动的不稳定性

Y. Gubarev
{"title":"理想可压缩流体稳态三维流动的不稳定性","authors":"Y. Gubarev","doi":"10.12691/IJPDEA-5-1-2","DOIUrl":null,"url":null,"abstract":"The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"103 1","pages":"10-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Instability of Steady–State Three–Dimensional Flows of an Ideal Compressible Fluid\",\"authors\":\"Y. Gubarev\",\"doi\":\"10.12691/IJPDEA-5-1-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"103 1\",\"pages\":\"10-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/IJPDEA-5-1-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/IJPDEA-5-1-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了完全占据一定体积的具有静止固体不可穿透边界的无粘性可压缩流体在无外力作用下的空间静态流动的线性稳定性问题。应用直接李雅普诺夫方法,证明了这种流动在小的三维扰动下是绝对不稳定的。得到了线性实际失稳的构造条件。找到了所考虑的扰动随时间增长的先验指数下估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Instability of Steady–State Three–Dimensional Flows of an Ideal Compressible Fluid
The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信