{"title":"理想可压缩流体稳态三维流动的不稳定性","authors":"Y. Gubarev","doi":"10.12691/IJPDEA-5-1-2","DOIUrl":null,"url":null,"abstract":"The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"103 1","pages":"10-18"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Instability of Steady–State Three–Dimensional Flows of an Ideal Compressible Fluid\",\"authors\":\"Y. Gubarev\",\"doi\":\"10.12691/IJPDEA-5-1-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.\",\"PeriodicalId\":11162,\"journal\":{\"name\":\"Differential Equations and Applications\",\"volume\":\"103 1\",\"pages\":\"10-18\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Equations and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12691/IJPDEA-5-1-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12691/IJPDEA-5-1-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Instability of Steady–State Three–Dimensional Flows of an Ideal Compressible Fluid
The problem on linear stability of stationary spatial flows of an inviscid compressible fluid entirely occupying a certain volume with quiescent solid impenetrable boundary in absence of external mass forces is studied. Applying the direct Lyapunov method, such flows are proved to be absolutely unstable under small three–dimensional (3D) perturbations. Constructive conditions for linear practical instability are obtained. The a priori exponential lower estimate for the growth of the considered perturbations in time is found.