五环调和图

IF 0.2 Q4 MATHEMATICS
Ahmad Salehi Zarrin Ghabaei, S. Azami
{"title":"五环调和图","authors":"Ahmad Salehi Zarrin Ghabaei, S. Azami","doi":"10.11648/J.PAMJ.20160505.15","DOIUrl":null,"url":null,"abstract":"Let  be a graph on n vertices  and let  be the degree of vertex  A graph  is defined to be harmonic if  is an eigenvector of the -adjacency matrix of  We now show that there are 4 regular and 45 non-regular connected pentacyclic harmonic graphs and determine their structure. In the end we conclude that all of c-cyclic harmonic graphs for  are planar graphs.","PeriodicalId":46057,"journal":{"name":"Italian Journal of Pure and Applied Mathematics","volume":"389 1","pages":"165"},"PeriodicalIF":0.2000,"publicationDate":"2016-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pentacyclic Harmonic Graph\",\"authors\":\"Ahmad Salehi Zarrin Ghabaei, S. Azami\",\"doi\":\"10.11648/J.PAMJ.20160505.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let  be a graph on n vertices  and let  be the degree of vertex  A graph  is defined to be harmonic if  is an eigenvector of the -adjacency matrix of  We now show that there are 4 regular and 45 non-regular connected pentacyclic harmonic graphs and determine their structure. In the end we conclude that all of c-cyclic harmonic graphs for  are planar graphs.\",\"PeriodicalId\":46057,\"journal\":{\"name\":\"Italian Journal of Pure and Applied Mathematics\",\"volume\":\"389 1\",\"pages\":\"165\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2016-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Italian Journal of Pure and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.PAMJ.20160505.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Italian Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.PAMJ.20160505.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设一个有n个顶点的图,设顶点的度a图被定义为调和图,如果它是邻接矩阵的特征向量,我们现在证明有4个规则和45个非规则连通的五环调和图,并确定它们的结构。最后得出了所有c环调和图都是平面图的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pentacyclic Harmonic Graph
Let  be a graph on n vertices  and let  be the degree of vertex  A graph  is defined to be harmonic if  is an eigenvector of the -adjacency matrix of  We now show that there are 4 regular and 45 non-regular connected pentacyclic harmonic graphs and determine their structure. In the end we conclude that all of c-cyclic harmonic graphs for  are planar graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
2
期刊介绍: The “Italian Journal of Pure and Applied Mathematics” publishes original research works containing significant results in the field of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信