裁剪度量阈值的贝叶斯层次模型

Neil A. Ernst
{"title":"裁剪度量阈值的贝叶斯层次模型","authors":"Neil A. Ernst","doi":"10.1145/3196398.3196443","DOIUrl":null,"url":null,"abstract":"Software is highly contextual. While there are cross-cutting 'global' lessons, individual software projects exhibit many 'local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.","PeriodicalId":6639,"journal":{"name":"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)","volume":"251 1","pages":"587-591"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Bayesian Hierarchical Modelling for Tailoring Metric Thresholds\",\"authors\":\"Neil A. Ernst\",\"doi\":\"10.1145/3196398.3196443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Software is highly contextual. While there are cross-cutting 'global' lessons, individual software projects exhibit many 'local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.\",\"PeriodicalId\":6639,\"journal\":{\"name\":\"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)\",\"volume\":\"251 1\",\"pages\":\"587-591\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3196398.3196443\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3196398.3196443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

软件是高度关联的。虽然存在横切的“全局”教训,但单个软件项目表现出许多“本地”属性。这种数据的异质性使得从全球数据中得出局部结论变得危险。一个关键的研究挑战是构建基于全球特征和数据量的局部准确预测模型。以前的工作使用聚类和迁移学习方法来解决这个问题,这些方法可以识别局部相似的特征。本文采用了一种更简单的方法,即贝叶斯分层建模。我们展示了分层建模支持跨项目比较,同时保留了本地上下文。为了演示该方法,我们对设置软件度量阈值的现有研究进行了概念复制。我们的新结果表明,与全局方法相比,我们的分层模型将模型预测误差降低了50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Hierarchical Modelling for Tailoring Metric Thresholds
Software is highly contextual. While there are cross-cutting 'global' lessons, individual software projects exhibit many 'local' properties. This data heterogeneity makes drawing local conclusions from global data dangerous. A key research challenge is to construct locally accurate prediction models that are informed by global characteristics and data volumes. Previous work has tackled this problem using clustering and transfer learning approaches, which identify locally similar characteristics. This paper applies a simpler approach known as Bayesian hierarchical modeling. We show that hierarchical modeling supports cross-project comparisons, while preserving local context. To demonstrate the approach, we conduct a conceptual replication of an existing study on setting software metrics thresholds. Our emerging results show our hierarchical model reduces model prediction error compared to a global approach by up to 50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信