空间发散性能的实证建模

Q4 Social Sciences
A. Calotoiu, M. Geisenhofer, F. Kummer, M. Ritter, Jens Weber, T. Hoefler, M. Oberlack, F. Wolf
{"title":"空间发散性能的实证建模","authors":"A. Calotoiu, M. Geisenhofer, F. Kummer, M. Ritter, Jens Weber, T. Hoefler, M. Oberlack, F. Wolf","doi":"10.1109/HUSTProtools51951.2020.00015","DOIUrl":null,"url":null,"abstract":"A common simplification made when modeling the performance of a parallel program is the assumption that the performance behavior of all processes or threads is largely uniform. Empirical performance-modeling tools such as Extra-P exploit this common pattern to make their modeling process more noise resilient, mitigating the effect of outliers by summarizing performance measurements of individual functions across all processes. While the underlying assumption does not equally hold for all applications, knowing the qualitative differences in how the performance of individual processes changes as execution parameters are varied can reveal important performance bottlenecks such as malicious patterns of load imbalance. A challenge for empirical modeling tools, however, arises from the fact that the behavioral class of a process may depend on the process configuration, letting process ranks migrate between classes as the number of processes grows. In this paper, we introduce a novel approach to the problem of modeling of spatially diverging performance based on a certain type of process clustering. We apply our technique to identify a previously unknown performance bottleneck in the BoSSS fluid-dynamics code. Removing it made the code regions in question running up to 20 times and the application as a whole run up to 4.5 times faster.","PeriodicalId":38836,"journal":{"name":"Meta: Avaliacao","volume":"13 1","pages":"71-80"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Empirical Modeling of Spatially Diverging Performance\",\"authors\":\"A. Calotoiu, M. Geisenhofer, F. Kummer, M. Ritter, Jens Weber, T. Hoefler, M. Oberlack, F. Wolf\",\"doi\":\"10.1109/HUSTProtools51951.2020.00015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common simplification made when modeling the performance of a parallel program is the assumption that the performance behavior of all processes or threads is largely uniform. Empirical performance-modeling tools such as Extra-P exploit this common pattern to make their modeling process more noise resilient, mitigating the effect of outliers by summarizing performance measurements of individual functions across all processes. While the underlying assumption does not equally hold for all applications, knowing the qualitative differences in how the performance of individual processes changes as execution parameters are varied can reveal important performance bottlenecks such as malicious patterns of load imbalance. A challenge for empirical modeling tools, however, arises from the fact that the behavioral class of a process may depend on the process configuration, letting process ranks migrate between classes as the number of processes grows. In this paper, we introduce a novel approach to the problem of modeling of spatially diverging performance based on a certain type of process clustering. We apply our technique to identify a previously unknown performance bottleneck in the BoSSS fluid-dynamics code. Removing it made the code regions in question running up to 20 times and the application as a whole run up to 4.5 times faster.\",\"PeriodicalId\":38836,\"journal\":{\"name\":\"Meta: Avaliacao\",\"volume\":\"13 1\",\"pages\":\"71-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta: Avaliacao\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUSTProtools51951.2020.00015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta: Avaliacao","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUSTProtools51951.2020.00015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在对并行程序的性能进行建模时,一个常见的简化是假设所有进程或线程的性能行为在很大程度上是一致的。经验性能建模工具(如Extra-P)利用这种常见模式,使其建模过程更具抗噪能力,通过总结所有过程中单个功能的性能测量值来减轻异常值的影响。虽然基本假设并不适用于所有应用程序,但是了解各个进程的性能随执行参数变化而变化的性质差异可以揭示重要的性能瓶颈,例如负载不平衡的恶意模式。然而,经验建模工具的一个挑战来自于这样一个事实,即过程的行为类可能依赖于过程配置,随着过程数量的增长,过程的等级在类之间迁移。本文提出了一种基于特定类型过程聚类的空间发散性能建模方法。我们应用我们的技术来识别以前未知的boss流体动力学代码中的性能瓶颈。删除它可以使相关代码区域运行最多20次,使整个应用程序的运行速度提高最多4.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Empirical Modeling of Spatially Diverging Performance
A common simplification made when modeling the performance of a parallel program is the assumption that the performance behavior of all processes or threads is largely uniform. Empirical performance-modeling tools such as Extra-P exploit this common pattern to make their modeling process more noise resilient, mitigating the effect of outliers by summarizing performance measurements of individual functions across all processes. While the underlying assumption does not equally hold for all applications, knowing the qualitative differences in how the performance of individual processes changes as execution parameters are varied can reveal important performance bottlenecks such as malicious patterns of load imbalance. A challenge for empirical modeling tools, however, arises from the fact that the behavioral class of a process may depend on the process configuration, letting process ranks migrate between classes as the number of processes grows. In this paper, we introduce a novel approach to the problem of modeling of spatially diverging performance based on a certain type of process clustering. We apply our technique to identify a previously unknown performance bottleneck in the BoSSS fluid-dynamics code. Removing it made the code regions in question running up to 20 times and the application as a whole run up to 4.5 times faster.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meta: Avaliacao
Meta: Avaliacao Social Sciences-Education
CiteScore
0.40
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信