Jinjin Chi, Jihong Ouyang, Ang Zhang, Xinhua Wang, Ximing Li
{"title":"快速耦合变分推理","authors":"Jinjin Chi, Jihong Ouyang, Ang Zhang, Xinhua Wang, Ximing Li","doi":"10.1080/0952813X.2021.1871970","DOIUrl":null,"url":null,"abstract":"ABSTRACT Mean-field variational inference, built on fully factorisations, can be efficiently solved; however, it ignores the dependencies between latent variables, resulting in lower performance. To address this, the copula variational inference (CVI) method is proposed by using the well-established copulas to effectively capture posterior dependencies, leading to better approximations. However, it suffers from a computational issue, where the optimisation for big models with massive latent variables is quite time-consuming. This is mainly caused by the expensive sampling when forming noisy Monte Carlo gradients in CVI. For CVI speedup, in this paper we propose a novel fast CVI (abbr. FCVI). In FCVI, we derive the gradient of CVI objective by an expectation of the mean-field factorisation. Therefore, we can achieve a much efficient sampling from the -dimensional mean-field factorisation, enabling to reduce the sampling complexity from to . To evaluate FCVI, we compare it against baseline methods on modelling performance and runtime. Experimental results demonstrate that FCVI is on a par with CVI, but runs much faster.","PeriodicalId":15677,"journal":{"name":"Journal of Experimental & Theoretical Artificial Intelligence","volume":"54 1","pages":"295 - 310"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Fast copula variational inference\",\"authors\":\"Jinjin Chi, Jihong Ouyang, Ang Zhang, Xinhua Wang, Ximing Li\",\"doi\":\"10.1080/0952813X.2021.1871970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Mean-field variational inference, built on fully factorisations, can be efficiently solved; however, it ignores the dependencies between latent variables, resulting in lower performance. To address this, the copula variational inference (CVI) method is proposed by using the well-established copulas to effectively capture posterior dependencies, leading to better approximations. However, it suffers from a computational issue, where the optimisation for big models with massive latent variables is quite time-consuming. This is mainly caused by the expensive sampling when forming noisy Monte Carlo gradients in CVI. For CVI speedup, in this paper we propose a novel fast CVI (abbr. FCVI). In FCVI, we derive the gradient of CVI objective by an expectation of the mean-field factorisation. Therefore, we can achieve a much efficient sampling from the -dimensional mean-field factorisation, enabling to reduce the sampling complexity from to . To evaluate FCVI, we compare it against baseline methods on modelling performance and runtime. Experimental results demonstrate that FCVI is on a par with CVI, but runs much faster.\",\"PeriodicalId\":15677,\"journal\":{\"name\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"volume\":\"54 1\",\"pages\":\"295 - 310\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Theoretical Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0952813X.2021.1871970\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Theoretical Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0952813X.2021.1871970","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
ABSTRACT Mean-field variational inference, built on fully factorisations, can be efficiently solved; however, it ignores the dependencies between latent variables, resulting in lower performance. To address this, the copula variational inference (CVI) method is proposed by using the well-established copulas to effectively capture posterior dependencies, leading to better approximations. However, it suffers from a computational issue, where the optimisation for big models with massive latent variables is quite time-consuming. This is mainly caused by the expensive sampling when forming noisy Monte Carlo gradients in CVI. For CVI speedup, in this paper we propose a novel fast CVI (abbr. FCVI). In FCVI, we derive the gradient of CVI objective by an expectation of the mean-field factorisation. Therefore, we can achieve a much efficient sampling from the -dimensional mean-field factorisation, enabling to reduce the sampling complexity from to . To evaluate FCVI, we compare it against baseline methods on modelling performance and runtime. Experimental results demonstrate that FCVI is on a par with CVI, but runs much faster.
期刊介绍:
Journal of Experimental & Theoretical Artificial Intelligence (JETAI) is a world leading journal dedicated to publishing high quality, rigorously reviewed, original papers in artificial intelligence (AI) research.
The journal features work in all subfields of AI research and accepts both theoretical and applied research. Topics covered include, but are not limited to, the following:
• cognitive science
• games
• learning
• knowledge representation
• memory and neural system modelling
• perception
• problem-solving