更新结构之旅:参观透镜和量子外壳

Matthew Wilson, James Hefford, G. Boisseau, Vincent Wang
{"title":"更新结构之旅:参观透镜和量子外壳","authors":"Matthew Wilson, James Hefford, G. Boisseau, Vincent Wang","doi":"10.4204/EPTCS.333.1","DOIUrl":null,"url":null,"abstract":"We build upon our recently introduced concept of an update structure to show that they are a generalisation of very-well-behaved lenses, that is, there is a bijection between a strict subset of update structures and vwb lenses in cartesian categories. We then begin to investigate the zoo of possible update structures. We show that update structures survive decoherence and are sufficiently general to capture quantum observables, pinpointing the additional assumptions required to make the two coincide. In doing so, we shift the focus from dagger-special commutative Frobenius algebras to interacting (co)magma (co)module pairs, showing that the algebraic properties of the (co)multiplication arise from the module-comodule interaction, rather than direct assumptions about the magma comagma pair. Thus this work is of foundational interest as update structures form a strictly more general class of algebraic objects, the taming of which promises to illuminate novel relationships between separately studied mathematical structures.","PeriodicalId":11810,"journal":{"name":"essentia law Merchant Shipping Act 1995","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Safari of Update Structures: Visiting the Lens and Quantum Enclosures\",\"authors\":\"Matthew Wilson, James Hefford, G. Boisseau, Vincent Wang\",\"doi\":\"10.4204/EPTCS.333.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We build upon our recently introduced concept of an update structure to show that they are a generalisation of very-well-behaved lenses, that is, there is a bijection between a strict subset of update structures and vwb lenses in cartesian categories. We then begin to investigate the zoo of possible update structures. We show that update structures survive decoherence and are sufficiently general to capture quantum observables, pinpointing the additional assumptions required to make the two coincide. In doing so, we shift the focus from dagger-special commutative Frobenius algebras to interacting (co)magma (co)module pairs, showing that the algebraic properties of the (co)multiplication arise from the module-comodule interaction, rather than direct assumptions about the magma comagma pair. Thus this work is of foundational interest as update structures form a strictly more general class of algebraic objects, the taming of which promises to illuminate novel relationships between separately studied mathematical structures.\",\"PeriodicalId\":11810,\"journal\":{\"name\":\"essentia law Merchant Shipping Act 1995\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"essentia law Merchant Shipping Act 1995\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.333.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"essentia law Merchant Shipping Act 1995","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.333.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们建立在我们最近引入的更新结构的概念上,以表明它们是非常表现良好的透镜的概括,也就是说,在笛卡尔范畴中,更新结构的严格子集和vwb透镜之间存在双射。然后我们开始研究各种可能的更新结构。我们证明了更新结构在退相干中幸存下来,并且足够普遍,可以捕获量子可观测值,并指出了使两者一致所需的额外假设。在此过程中,我们将焦点从dagger-special交换Frobenius代数转移到相互作用(co)岩浆(co)模对,表明(co)乘法的代数性质来自模-模相互作用,而不是直接假设岩浆-岩浆对。因此,这项工作是基础的兴趣,因为更新结构形成了一个严格的更一般的代数对象类别,其驯服有望阐明单独研究的数学结构之间的新关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Safari of Update Structures: Visiting the Lens and Quantum Enclosures
We build upon our recently introduced concept of an update structure to show that they are a generalisation of very-well-behaved lenses, that is, there is a bijection between a strict subset of update structures and vwb lenses in cartesian categories. We then begin to investigate the zoo of possible update structures. We show that update structures survive decoherence and are sufficiently general to capture quantum observables, pinpointing the additional assumptions required to make the two coincide. In doing so, we shift the focus from dagger-special commutative Frobenius algebras to interacting (co)magma (co)module pairs, showing that the algebraic properties of the (co)multiplication arise from the module-comodule interaction, rather than direct assumptions about the magma comagma pair. Thus this work is of foundational interest as update structures form a strictly more general class of algebraic objects, the taming of which promises to illuminate novel relationships between separately studied mathematical structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信