{"title":"通过在高斯有理数上定义的二次映射迭代数域塔","authors":"Yasushi Mizusawa, Kota Yamamoto","doi":"10.3792/PJAA.96.012","DOIUrl":null,"url":null,"abstract":": An iterated tower of number fields is constructed by adding preimages of a base point by iterations of a rational map. A certain basic quadratic rational map defined over the Gaussian number field yields such a tower of which any two steps are relative bicyclic biquadratic extensions. Regarding such towers as analogues of Z 2 -extensions, we examine the parity of 2-ideal class numbers along the towers with some examples.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Iterated towers of number fields by a quadratic map defined over the Gaussian rationals\",\"authors\":\"Yasushi Mizusawa, Kota Yamamoto\",\"doi\":\"10.3792/PJAA.96.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": An iterated tower of number fields is constructed by adding preimages of a base point by iterations of a rational map. A certain basic quadratic rational map defined over the Gaussian number field yields such a tower of which any two steps are relative bicyclic biquadratic extensions. Regarding such towers as analogues of Z 2 -extensions, we examine the parity of 2-ideal class numbers along the towers with some examples.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3792/PJAA.96.012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3792/PJAA.96.012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Iterated towers of number fields by a quadratic map defined over the Gaussian rationals
: An iterated tower of number fields is constructed by adding preimages of a base point by iterations of a rational map. A certain basic quadratic rational map defined over the Gaussian number field yields such a tower of which any two steps are relative bicyclic biquadratic extensions. Regarding such towers as analogues of Z 2 -extensions, we examine the parity of 2-ideal class numbers along the towers with some examples.