J. Hale, Luca Campanelli, Jixing Li, Christophe Pallier, Jonathan Brennan
{"title":"语言处理的神经计算模型","authors":"J. Hale, Luca Campanelli, Jixing Li, Christophe Pallier, Jonathan Brennan","doi":"10.1146/annurev-linguistics-051421-020803","DOIUrl":null,"url":null,"abstract":"Efforts to understand the brain bases of language face the Mapping Problem: At what level do linguistic computations and representations connect to human neurobiology? We review one approach to this problem that relies on rigorously defined computational models to specify the links between linguistic features and neural signals. Such tools can be used to estimate linguistic predictions, model linguistic features, and specify a sequence of processing steps that may be quantitatively fit to neural signals collected while participants use language. Progress has been helped by advances in machine learning, attention to linguistically interpretable models, and openly shared data sets that allow researchers to compare and contrast a variety of models. We describe one such data set in detail in the Supplementary Appendix. Expected final online publication date for the Annual Review of Linguistics, Volume 8 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":45803,"journal":{"name":"Annual Review of Linguistics","volume":"103 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Neurocomputational Models of Language Processing\",\"authors\":\"J. Hale, Luca Campanelli, Jixing Li, Christophe Pallier, Jonathan Brennan\",\"doi\":\"10.1146/annurev-linguistics-051421-020803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efforts to understand the brain bases of language face the Mapping Problem: At what level do linguistic computations and representations connect to human neurobiology? We review one approach to this problem that relies on rigorously defined computational models to specify the links between linguistic features and neural signals. Such tools can be used to estimate linguistic predictions, model linguistic features, and specify a sequence of processing steps that may be quantitatively fit to neural signals collected while participants use language. Progress has been helped by advances in machine learning, attention to linguistically interpretable models, and openly shared data sets that allow researchers to compare and contrast a variety of models. We describe one such data set in detail in the Supplementary Appendix. Expected final online publication date for the Annual Review of Linguistics, Volume 8 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.\",\"PeriodicalId\":45803,\"journal\":{\"name\":\"Annual Review of Linguistics\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Linguistics\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-linguistics-051421-020803\",\"RegionNum\":1,\"RegionCategory\":\"文学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Linguistics","FirstCategoryId":"98","ListUrlMain":"https://doi.org/10.1146/annurev-linguistics-051421-020803","RegionNum":1,"RegionCategory":"文学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Efforts to understand the brain bases of language face the Mapping Problem: At what level do linguistic computations and representations connect to human neurobiology? We review one approach to this problem that relies on rigorously defined computational models to specify the links between linguistic features and neural signals. Such tools can be used to estimate linguistic predictions, model linguistic features, and specify a sequence of processing steps that may be quantitatively fit to neural signals collected while participants use language. Progress has been helped by advances in machine learning, attention to linguistically interpretable models, and openly shared data sets that allow researchers to compare and contrast a variety of models. We describe one such data set in detail in the Supplementary Appendix. Expected final online publication date for the Annual Review of Linguistics, Volume 8 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
期刊介绍:
The Annual Review of Linguistics, in publication since 2015, covers significant developments in the field of linguistics, including phonetics, phonology, morphology, syntax, semantics, pragmatics, and their interfaces. Reviews synthesize advances in linguistic theory, sociolinguistics, psycholinguistics, neurolinguistics, language change, biology and evolution of language, typology, as well as applications of linguistics in many domains.