指标2的非平坦半黎曼空间形式的拟极小等距浸入

Q4 Mathematics
N. Turgay, Alev Kelleci, R. Şen, E. O. Canfes
{"title":"指标2的非平坦半黎曼空间形式的拟极小等距浸入","authors":"N. Turgay, Alev Kelleci, R. Şen, E. O. Canfes","doi":"10.7546/GIQ-20-2019-255-265","DOIUrl":null,"url":null,"abstract":"In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Quasi-Minimal Isometric Immersions into Non-Flat Semi Riemannian Space Forms of Index Two\",\"authors\":\"N. Turgay, Alev Kelleci, R. Şen, E. O. Canfes\",\"doi\":\"10.7546/GIQ-20-2019-255-265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-255-265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-255-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先总结了双保守浸没法的最新研究结果。然后,我们得到了具有非零截面曲率的指标2的四维半黎曼空间形式存在双保守拟极小浸入的充分必要条件。我们还构造了一个双保守拟极小曲面的显式例子。MSC: 53d12, 53c40, 53c42
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Quasi-Minimal Isometric Immersions into Non-Flat Semi Riemannian Space Forms of Index Two
In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geometry, Integrability and Quantization
Geometry, Integrability and Quantization Mathematics-Mathematical Physics
CiteScore
0.70
自引率
0.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信