{"title":"指标2的非平坦半黎曼空间形式的拟极小等距浸入","authors":"N. Turgay, Alev Kelleci, R. Şen, E. O. Canfes","doi":"10.7546/GIQ-20-2019-255-265","DOIUrl":null,"url":null,"abstract":"In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42","PeriodicalId":53425,"journal":{"name":"Geometry, Integrability and Quantization","volume":"211 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Quasi-Minimal Isometric Immersions into Non-Flat Semi Riemannian Space Forms of Index Two\",\"authors\":\"N. Turgay, Alev Kelleci, R. Şen, E. O. Canfes\",\"doi\":\"10.7546/GIQ-20-2019-255-265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42\",\"PeriodicalId\":53425,\"journal\":{\"name\":\"Geometry, Integrability and Quantization\",\"volume\":\"211 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometry, Integrability and Quantization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7546/GIQ-20-2019-255-265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry, Integrability and Quantization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/GIQ-20-2019-255-265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
On Quasi-Minimal Isometric Immersions into Non-Flat Semi Riemannian Space Forms of Index Two
In this paper, first we gave a summary of recent results on biconservative immersions. Then, we obtained a necessary and sufficient condition for the existence of biconservative quasi-minimal immersions into a four dimensional semi-Riemannian space form of index two with non-zero sectional curvatures. We also constructed an explicit example of biconservative quasiminimal surface. MSC : 53D12, 53C40, 53C42