基于公共操作数的多次乘法的高效模求

C. Nègre, T. Plantard, J. Robert
{"title":"基于公共操作数的多次乘法的高效模求","authors":"C. Nègre, T. Plantard, J. Robert","doi":"10.1109/ARITH.2015.24","DOIUrl":null,"url":null,"abstract":"The main operation in RSA encryption/decryption is the modular exponentiation, which involves a long sequence of modular squarings and multiplications. In this paper, we propose to improve modular multiplications AB, AC which have a common operand. To reach this goal we modify the Montgomery modular multiplication in order to share common computations in AB and AC. We extend this idea to reduce the cost of multiple modular multiplications AB1,...,ABℓ by the same operand A. We then take advantage of these improvements in the Montgomery-ladder and SPA resistant m-ary exponentiation algorithms. The complexity analysis shows that for an RSA modulus of size 2048 bits, the proposed improvements reduce the number of word operations (ADD and MUL) by 14% for the Montgomery-ladder and by 5%-8% for the m-ary exponentiations. Our implementations show a speed-up by 8%-14% for the Montgomery-ladder and by 1%-8% for the m-ary exponentiations for modulus of size 1024, 2048 and 4048 bits.","PeriodicalId":6526,"journal":{"name":"2015 IEEE 22nd Symposium on Computer Arithmetic","volume":"8 1","pages":"144-151"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Modular Exponentiation Based on Multiple Multiplications by a Common Operand\",\"authors\":\"C. Nègre, T. Plantard, J. Robert\",\"doi\":\"10.1109/ARITH.2015.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main operation in RSA encryption/decryption is the modular exponentiation, which involves a long sequence of modular squarings and multiplications. In this paper, we propose to improve modular multiplications AB, AC which have a common operand. To reach this goal we modify the Montgomery modular multiplication in order to share common computations in AB and AC. We extend this idea to reduce the cost of multiple modular multiplications AB1,...,ABℓ by the same operand A. We then take advantage of these improvements in the Montgomery-ladder and SPA resistant m-ary exponentiation algorithms. The complexity analysis shows that for an RSA modulus of size 2048 bits, the proposed improvements reduce the number of word operations (ADD and MUL) by 14% for the Montgomery-ladder and by 5%-8% for the m-ary exponentiations. Our implementations show a speed-up by 8%-14% for the Montgomery-ladder and by 1%-8% for the m-ary exponentiations for modulus of size 1024, 2048 and 4048 bits.\",\"PeriodicalId\":6526,\"journal\":{\"name\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"volume\":\"8 1\",\"pages\":\"144-151\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 22nd Symposium on Computer Arithmetic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.2015.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd Symposium on Computer Arithmetic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

RSA加密/解密的主要操作是模幂运算,它涉及一长串的模平方和乘法。本文提出改进具有共同操作数的模乘法AB、AC。为了实现这一目标,我们修改了Montgomery模乘法,以便在AB和AC中共享共同的计算。我们扩展了这一思想,以降低多个模乘法AB1,…然后,我们利用这些改进在蒙哥马利阶梯和抗SPA的m-幂算法中。复杂度分析表明,对于大小为2048位的RSA模量,所提出的改进将蒙哥马利阶梯的字操作(ADD和MUL)数量减少了14%,将m次幂的字操作数量减少了5%-8%。我们的实现表明,蒙哥马利阶梯的速度提高了8%-14%,对于大小为1024、2048和4048位的模量的m次幂的速度提高了1%-8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Modular Exponentiation Based on Multiple Multiplications by a Common Operand
The main operation in RSA encryption/decryption is the modular exponentiation, which involves a long sequence of modular squarings and multiplications. In this paper, we propose to improve modular multiplications AB, AC which have a common operand. To reach this goal we modify the Montgomery modular multiplication in order to share common computations in AB and AC. We extend this idea to reduce the cost of multiple modular multiplications AB1,...,ABℓ by the same operand A. We then take advantage of these improvements in the Montgomery-ladder and SPA resistant m-ary exponentiation algorithms. The complexity analysis shows that for an RSA modulus of size 2048 bits, the proposed improvements reduce the number of word operations (ADD and MUL) by 14% for the Montgomery-ladder and by 5%-8% for the m-ary exponentiations. Our implementations show a speed-up by 8%-14% for the Montgomery-ladder and by 1%-8% for the m-ary exponentiations for modulus of size 1024, 2048 and 4048 bits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信