{"title":"用Lyapunov人工小参数与连续粒子群优化的混合方法求解非线性微分方程","authors":"O. Qasim, Ahmed Entesar, W. Al-Hayani","doi":"10.3934/NACO.2021001","DOIUrl":null,"url":null,"abstract":"In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \\begin{document}$ \\varepsilon $\\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization\",\"authors\":\"O. Qasim, Ahmed Entesar, W. Al-Hayani\",\"doi\":\"10.3934/NACO.2021001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \\\\begin{document}$ \\\\varepsilon $\\\\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/NACO.2021001\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/NACO.2021001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
摘要
In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \begin{document}$ \varepsilon $\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.
Solving nonlinear differential equations using hybrid method between Lyapunov's artificial small parameter and continuous particle swarm optimization
In this paper, Lyapunov's artificial small parameter method (LASPM) with continuous particle swarm optimization (CPSO) is presented and used for solving nonlinear differential equations. The proposed method, LASPM-CPSO, is based on estimating the \begin{document}$ \varepsilon $\end{document} parameter in LASPM through a PSO algorithm and based on a proposed objective function. Three different examples are used to evaluate the proposed method LASPM-CPSO, and compare it with the classical method LASPM through different intervals of the domain. The results from the maximum absolute error (MAE) and mean squared error (MSE) obtained through the given examples show the reliability and efficiency of the proposed LASPM-CPSO method, compared to the classical method LASPM.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.