流体静力Stokes问题的稳定不连续Galerkin格式的数值分析

IF 3.8 2区 数学 Q1 MATHEMATICS
F. Guillén-González, M. V. Redondo-Neble, J. Rodríguez-Galván
{"title":"流体静力Stokes问题的稳定不连续Galerkin格式的数值分析","authors":"F. Guillén-González, M. V. Redondo-Neble, J. Rodríguez-Galván","doi":"10.1515/jnma-2019-0108","DOIUrl":null,"url":null,"abstract":"Abstract We propose a Discontinuous Galerkin (DG) scheme for the hydrostatic Stokes equations. These equations, related to large-scale PDE models in oceanography, are characterized by the loss of ellipticity of the vertical momentum equation. This fact provides some interesting challenges, such as the design of stable numerical schemes. The new scheme proposed here is based on the symmetric interior penalty (SIP) technique, with a particular treatment of the vertical velocity. It is well-known that stability of the mixed formulation of primitive equations requires, besides the LBB inf-sup condition, an additional hydrostatic inf-sup restriction relating pressure and vertical velocity. This hydrostatic inf-sup condition invalidates stability of usual Stokes stable continuous finite elements like Taylor-Hood 𝓟2/𝓟1 or bubble 𝓟1b/𝓟1. Here we prove stability for our 𝓟k/𝓟k DG scheme. Some novel numerical tests are provided which are in agreement with the previous analysis.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem\",\"authors\":\"F. Guillén-González, M. V. Redondo-Neble, J. Rodríguez-Galván\",\"doi\":\"10.1515/jnma-2019-0108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We propose a Discontinuous Galerkin (DG) scheme for the hydrostatic Stokes equations. These equations, related to large-scale PDE models in oceanography, are characterized by the loss of ellipticity of the vertical momentum equation. This fact provides some interesting challenges, such as the design of stable numerical schemes. The new scheme proposed here is based on the symmetric interior penalty (SIP) technique, with a particular treatment of the vertical velocity. It is well-known that stability of the mixed formulation of primitive equations requires, besides the LBB inf-sup condition, an additional hydrostatic inf-sup restriction relating pressure and vertical velocity. This hydrostatic inf-sup condition invalidates stability of usual Stokes stable continuous finite elements like Taylor-Hood 𝓟2/𝓟1 or bubble 𝓟1b/𝓟1. Here we prove stability for our 𝓟k/𝓟k DG scheme. Some novel numerical tests are provided which are in agreement with the previous analysis.\",\"PeriodicalId\":50109,\"journal\":{\"name\":\"Journal of Numerical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jnma-2019-0108\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2019-0108","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要提出了流体静力Stokes方程的不连续Galerkin (DG)格式。这些方程与海洋学中的大尺度PDE模式有关,其特点是垂直动量方程的椭圆性丧失。这一事实提供了一些有趣的挑战,如设计稳定的数值格式。本文提出的新方案基于对称内罚(SIP)技术,并对垂直速度进行了特殊处理。众所周知,原始方程的混合公式的稳定性除了需要LBB入水条件外,还需要一个与压力和垂直速度相关的流体静力入水限制。这种流体静力作用条件使通常的Stokes稳定连续有限元(如Taylor-Hood𝓟2/𝓟1或bubble𝓟1b/𝓟1)的稳定性失效。这里我们证明了我们的𝓟k/𝓟k DG方案的稳定性。给出了一些新的数值试验结果,与前人的分析结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of a stable discontinuous Galerkin scheme for the hydrostatic Stokes problem
Abstract We propose a Discontinuous Galerkin (DG) scheme for the hydrostatic Stokes equations. These equations, related to large-scale PDE models in oceanography, are characterized by the loss of ellipticity of the vertical momentum equation. This fact provides some interesting challenges, such as the design of stable numerical schemes. The new scheme proposed here is based on the symmetric interior penalty (SIP) technique, with a particular treatment of the vertical velocity. It is well-known that stability of the mixed formulation of primitive equations requires, besides the LBB inf-sup condition, an additional hydrostatic inf-sup restriction relating pressure and vertical velocity. This hydrostatic inf-sup condition invalidates stability of usual Stokes stable continuous finite elements like Taylor-Hood 𝓟2/𝓟1 or bubble 𝓟1b/𝓟1. Here we prove stability for our 𝓟k/𝓟k DG scheme. Some novel numerical tests are provided which are in agreement with the previous analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信