盲多光谱图像泛锐化

Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma
{"title":"盲多光谱图像泛锐化","authors":"Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma","doi":"10.1109/ICASSP40776.2020.9053554","DOIUrl":null,"url":null,"abstract":"We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"1429-1433"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Blind Multi-Spectral Image Pan-Sharpening\",\"authors\":\"Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma\",\"doi\":\"10.1109/ICASSP40776.2020.9053554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"1429-1433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于空间模糊核和跨通道关系的先验,我们解决了低空间分辨率多光谱(MS)图像与其相关的错位高空间分辨率全色(PAN)图像的锐化问题。特别地,我们利用模糊核的总广义变分和跨通道关系的局部拉普拉斯先验,在多凸优化框架内提出了盲泛锐化问题。该方法采用交替方向乘法器(ADMM),交替更新模糊核和锐化中间MS图像。数值实验表明,与基于最先进的优化和基于深度学习的算法相比,我们的方法对较大的不对准误差更具鲁棒性,并产生更好的超分辨率MS图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blind Multi-Spectral Image Pan-Sharpening
We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信