Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma
{"title":"盲多光谱图像泛锐化","authors":"Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma","doi":"10.1109/ICASSP40776.2020.9053554","DOIUrl":null,"url":null,"abstract":"We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"1 1","pages":"1429-1433"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Blind Multi-Spectral Image Pan-Sharpening\",\"authors\":\"Lantao Yu, Dehong Liu, H. Mansour, P. Boufounos, Yanting Ma\",\"doi\":\"10.1109/ICASSP40776.2020.9053554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.\",\"PeriodicalId\":13127,\"journal\":{\"name\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"1 1\",\"pages\":\"1429-1433\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP40776.2020.9053554\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9053554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We address the problem of sharpening low spatial-resolution multi-spectral (MS) images with their associated misaligned high spatial-resolution panchromatic (PAN) image, based on priors on the spatial blur kernel and on the cross-channel relationship. In particular, we formulate the blind pan-sharpening problem within a multi-convex optimization framework using total generalized variation for the blur kernel and local Laplacian prior for the cross-channel relationship. The problem is solved by the alternating direction method of multipliers (ADMM), which alternately updates the blur kernel and sharpens intermediate MS images. Numerical experiments demonstrate that our approach is more robust to large misalignment errors and yields better super resolved MS images compared to state-of-the-art optimization-based and deep-learning-based algorithms.