非线性弹性粘接接头的渐近分析

Françoise Krasucki , Arnaud Münch , Yves Ousset
{"title":"非线性弹性粘接接头的渐近分析","authors":"Françoise Krasucki ,&nbsp;Arnaud Münch ,&nbsp;Yves Ousset","doi":"10.1016/S1620-7742(01)01345-9","DOIUrl":null,"url":null,"abstract":"<div><p>Within the framework of nonlinear elasticity, we study the behaviour of a bonded joint formed by two adherends and a joint of thickness <span><math><mtext>εh</mtext></math></span>. When the stiffness of the adhesive is of order <span><math><mtext>ε</mtext></math></span> with respect to the adherends, the analysis gives us a limit model where the constitutive equations of the adherend are only linear. We show existence of solutions of the model and discuss the unicity.</p></div>","PeriodicalId":100302,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","volume":"329 6","pages":"Pages 429-434"},"PeriodicalIF":0.0000,"publicationDate":"2001-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01345-9","citationCount":"5","resultStr":"{\"title\":\"Analyse asymptotique d'un assemblage collé en élasticité non linéaire\",\"authors\":\"Françoise Krasucki ,&nbsp;Arnaud Münch ,&nbsp;Yves Ousset\",\"doi\":\"10.1016/S1620-7742(01)01345-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Within the framework of nonlinear elasticity, we study the behaviour of a bonded joint formed by two adherends and a joint of thickness <span><math><mtext>εh</mtext></math></span>. When the stiffness of the adhesive is of order <span><math><mtext>ε</mtext></math></span> with respect to the adherends, the analysis gives us a limit model where the constitutive equations of the adherend are only linear. We show existence of solutions of the model and discuss the unicity.</p></div>\",\"PeriodicalId\":100302,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"volume\":\"329 6\",\"pages\":\"Pages 429-434\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1620-7742(01)01345-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1620774201013459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series IIB - Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1620774201013459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在非线性弹性力学的框架下,研究了由两个附着体和厚度为εh的节理组成的粘结节理的行为。当黏合剂的刚度相对于黏合剂的刚度为ε阶时,分析得到黏合剂本构方程仅为线性的极限模型。证明了该模型解的存在性,并讨论了其唯一性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyse asymptotique d'un assemblage collé en élasticité non linéaire

Within the framework of nonlinear elasticity, we study the behaviour of a bonded joint formed by two adherends and a joint of thickness εh. When the stiffness of the adhesive is of order ε with respect to the adherends, the analysis gives us a limit model where the constitutive equations of the adherend are only linear. We show existence of solutions of the model and discuss the unicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信