自由边界蒙日-安培方程

IF 1.3 3区 数学 Q4 AUTOMATION & CONTROL SYSTEMS
M. Sedjro
{"title":"自由边界蒙日-安培方程","authors":"M. Sedjro","doi":"10.1051/cocv/2022048","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a class of Monge -Ampere equations in a free boundary domain of $\\mathbb{R}^2$ where the value of the unknown function is prescribed on the free boundary. From a variational point of view, these equations describe an optimal transport problem from an a priori undetermined source domain to a prescribed target domain. We prove the existence and uniqueness of a variational solution to these Monge -Ampere equations under a singularity condition on the density function on the source domain. Furthermore, we provide regularity results under some conditions on the prescribed domain.","PeriodicalId":50500,"journal":{"name":"Esaim-Control Optimisation and Calculus of Variations","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free boundary Monge-Ampere equations\",\"authors\":\"M. Sedjro\",\"doi\":\"10.1051/cocv/2022048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a class of Monge -Ampere equations in a free boundary domain of $\\\\mathbb{R}^2$ where the value of the unknown function is prescribed on the free boundary. From a variational point of view, these equations describe an optimal transport problem from an a priori undetermined source domain to a prescribed target domain. We prove the existence and uniqueness of a variational solution to these Monge -Ampere equations under a singularity condition on the density function on the source domain. Furthermore, we provide regularity results under some conditions on the prescribed domain.\",\"PeriodicalId\":50500,\"journal\":{\"name\":\"Esaim-Control Optimisation and Calculus of Variations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Esaim-Control Optimisation and Calculus of Variations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1051/cocv/2022048\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Control Optimisation and Calculus of Variations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1051/cocv/2022048","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了$\mathbb{R}^2$自由边界域上的一类蒙日-安培方程,其中未知函数的值是在自由边界上规定的。从变分的角度来看,这些方程描述了从一个先验的不确定的源域到一个规定的目标域的最优传输问题。在源域上密度函数的奇异条件下,证明了这些蒙日-安培方程的变分解的存在唯一性。并在一定条件下给出了正则性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free boundary Monge-Ampere equations
In this paper, we consider a class of Monge -Ampere equations in a free boundary domain of $\mathbb{R}^2$ where the value of the unknown function is prescribed on the free boundary. From a variational point of view, these equations describe an optimal transport problem from an a priori undetermined source domain to a prescribed target domain. We prove the existence and uniqueness of a variational solution to these Monge -Ampere equations under a singularity condition on the density function on the source domain. Furthermore, we provide regularity results under some conditions on the prescribed domain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Esaim-Control Optimisation and Calculus of Variations
Esaim-Control Optimisation and Calculus of Variations Mathematics-Computational Mathematics
自引率
7.10%
发文量
77
期刊介绍: ESAIM: COCV strives to publish rapidly and efficiently papers and surveys in the areas of Control, Optimisation and Calculus of Variations. Articles may be theoretical, computational, or both, and they will cover contemporary subjects with impact in forefront technology, biosciences, materials science, computer vision, continuum physics, decision sciences and other allied disciplines. Targeted topics include: in control: modeling, controllability, optimal control, stabilization, control design, hybrid control, robustness analysis, numerical and computational methods for control, stochastic or deterministic, continuous or discrete control systems, finite-dimensional or infinite-dimensional control systems, geometric control, quantum control, game theory; in optimisation: mathematical programming, large scale systems, stochastic optimisation, combinatorial optimisation, shape optimisation, convex or nonsmooth optimisation, inverse problems, interior point methods, duality methods, numerical methods, convergence and complexity, global optimisation, optimisation and dynamical systems, optimal transport, machine learning, image or signal analysis; in calculus of variations: variational methods for differential equations and Hamiltonian systems, variational inequalities; semicontinuity and convergence, existence and regularity of minimizers and critical points of functionals, relaxation; geometric problems and the use and development of geometric measure theory tools; problems involving randomness; viscosity solutions; numerical methods; homogenization, multiscale and singular perturbation problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信