{"title":"向列矩阵中聚合物的流变劳斯模型","authors":"F. Lequeux, R. Hocquart","doi":"10.1051/JPHYS:0199000510220259500","DOIUrl":null,"url":null,"abstract":"A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"83 1","pages":"2595-2604"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rheological Rouse model for a polymer in a nematic matrix\",\"authors\":\"F. Lequeux, R. Hocquart\",\"doi\":\"10.1051/JPHYS:0199000510220259500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"83 1\",\"pages\":\"2595-2604\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510220259500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510220259500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rheological Rouse model for a polymer in a nematic matrix
A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers