向列矩阵中聚合物的流变劳斯模型

F. Lequeux, R. Hocquart
{"title":"向列矩阵中聚合物的流变劳斯模型","authors":"F. Lequeux, R. Hocquart","doi":"10.1051/JPHYS:0199000510220259500","DOIUrl":null,"url":null,"abstract":"A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers","PeriodicalId":14747,"journal":{"name":"Journal De Physique","volume":"83 1","pages":"2595-2604"},"PeriodicalIF":0.0000,"publicationDate":"1990-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Rheological Rouse model for a polymer in a nematic matrix\",\"authors\":\"F. Lequeux, R. Hocquart\",\"doi\":\"10.1051/JPHYS:0199000510220259500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers\",\"PeriodicalId\":14747,\"journal\":{\"name\":\"Journal De Physique\",\"volume\":\"83 1\",\"pages\":\"2595-2604\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal De Physique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/JPHYS:0199000510220259500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal De Physique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/JPHYS:0199000510220259500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

建立了一个鼠漏和向列序参数耦合的模型。计算了简单剪切流中各模态链的几何形状。讨论了局部扭矩和正应力符号。这意味着引入相反耦合(从链到参数顺序)的非平凡方法,以获得小鼠向列相聚合物的模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rheological Rouse model for a polymer in a nematic matrix
A model of coupling between a mouse drain and a nematic order parameter is developed. The geometry of the chain for each mode, in simple shear flow is calculated. The local torque and normal stress sign are discussed. This implies non trivial ways to introduce the opposite coupling (from chain to parameter order) in order to get a model for mouse nematic polymers
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信