{"title":"蔗渣纤维增强聚丙烯基复合材料拉伸、弯曲及吸水性能研究","authors":"M. B. Hoque, Md. Sahadat Hossain, R. Khan","doi":"10.11648/J.JB.20190301.13","DOIUrl":null,"url":null,"abstract":"In this study, sugarcane bagasse fiber reinforced polypropylene based composites were fabricated successfully and their tensile, bending and water uptake behavior were studied. The composites were prepared by compression molding process. The fiber composition in the composites was 30% by weight. Results revealed that due to reinforcement by fiber, composites achieved 51% increase in tensile strength, 151% in tensile modulus, 109% in bending strength and 68% in bending modulus over that of polypropylene. Elongation at break was reduced due to the lower elongation property of fiber. The composites were treated by alkali for checking out the effects of alkali on composites. The concentrations of alkali used for treating the composites were 3%, 5% and 7% solution of sodium hydroxide (NaOH) and it was found that 7% solution of sodium hydroxide demonstrated lowest tensile and bending properties. Sheared composite samples were immersed into deionized water and it was noticed that composite samples were absorbed 2.10% water within 40 minutes of water absorption test. Soil degradation test was carried out for 16 weeks and it was observed that, the tensile and bending properties of sugarcane bagasse fiber reinforced polypropylene based composites were degraded slowly. The composites lost 35% of their original mechanical properties and retained 54% of actual weight after 16 weeks of degradation in soil medium.","PeriodicalId":73619,"journal":{"name":"Journal of biomaterials","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Study on Tensile, Bending and Water Uptake Properties of Sugarcane Bagasse Fiber Reinforced Polypropylene Based Composite\",\"authors\":\"M. B. Hoque, Md. Sahadat Hossain, R. Khan\",\"doi\":\"10.11648/J.JB.20190301.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, sugarcane bagasse fiber reinforced polypropylene based composites were fabricated successfully and their tensile, bending and water uptake behavior were studied. The composites were prepared by compression molding process. The fiber composition in the composites was 30% by weight. Results revealed that due to reinforcement by fiber, composites achieved 51% increase in tensile strength, 151% in tensile modulus, 109% in bending strength and 68% in bending modulus over that of polypropylene. Elongation at break was reduced due to the lower elongation property of fiber. The composites were treated by alkali for checking out the effects of alkali on composites. The concentrations of alkali used for treating the composites were 3%, 5% and 7% solution of sodium hydroxide (NaOH) and it was found that 7% solution of sodium hydroxide demonstrated lowest tensile and bending properties. Sheared composite samples were immersed into deionized water and it was noticed that composite samples were absorbed 2.10% water within 40 minutes of water absorption test. Soil degradation test was carried out for 16 weeks and it was observed that, the tensile and bending properties of sugarcane bagasse fiber reinforced polypropylene based composites were degraded slowly. The composites lost 35% of their original mechanical properties and retained 54% of actual weight after 16 weeks of degradation in soil medium.\",\"PeriodicalId\":73619,\"journal\":{\"name\":\"Journal of biomaterials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomaterials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.JB.20190301.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.JB.20190301.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study on Tensile, Bending and Water Uptake Properties of Sugarcane Bagasse Fiber Reinforced Polypropylene Based Composite
In this study, sugarcane bagasse fiber reinforced polypropylene based composites were fabricated successfully and their tensile, bending and water uptake behavior were studied. The composites were prepared by compression molding process. The fiber composition in the composites was 30% by weight. Results revealed that due to reinforcement by fiber, composites achieved 51% increase in tensile strength, 151% in tensile modulus, 109% in bending strength and 68% in bending modulus over that of polypropylene. Elongation at break was reduced due to the lower elongation property of fiber. The composites were treated by alkali for checking out the effects of alkali on composites. The concentrations of alkali used for treating the composites were 3%, 5% and 7% solution of sodium hydroxide (NaOH) and it was found that 7% solution of sodium hydroxide demonstrated lowest tensile and bending properties. Sheared composite samples were immersed into deionized water and it was noticed that composite samples were absorbed 2.10% water within 40 minutes of water absorption test. Soil degradation test was carried out for 16 weeks and it was observed that, the tensile and bending properties of sugarcane bagasse fiber reinforced polypropylene based composites were degraded slowly. The composites lost 35% of their original mechanical properties and retained 54% of actual weight after 16 weeks of degradation in soil medium.