基于R的盲源分离环境下时间序列降维

IF 5.4 2区 计算机科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
K. Nordhausen, M. Matilainen, J. Miettinen, Joni Virta, S. Taskinen
{"title":"基于R的盲源分离环境下时间序列降维","authors":"K. Nordhausen, M. Matilainen, J. Miettinen, Joni Virta, S. Taskinen","doi":"10.18637/jss.v098.i15","DOIUrl":null,"url":null,"abstract":"Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.","PeriodicalId":17237,"journal":{"name":"Journal of Statistical Software","volume":"94 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2021-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Dimension Reduction for Time Series in a Blind Source Separation Context Using R\",\"authors\":\"K. Nordhausen, M. Matilainen, J. Miettinen, Joni Virta, S. Taskinen\",\"doi\":\"10.18637/jss.v098.i15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.\",\"PeriodicalId\":17237,\"journal\":{\"name\":\"Journal of Statistical Software\",\"volume\":\"94 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Software\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.18637/jss.v098.i15\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Software","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.18637/jss.v098.i15","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5

摘要

多变量时间序列观测在多个科学领域越来越普遍,但这些数据的复杂依赖关系往往转化为具有大量参数的棘手模型。另一种方法是首先降低序列的维数,然后对产生的不相关信号进行单变量建模,避免需要任何协方差参数。一个流行且有效的框架是盲源分离。本文综述了R包tsBSS中可用的时间序列降维工具。这些方法包括估计二阶平稳时间序列的信号维数的方法,随机波动模型的降维技术和时间序列回归的监督降维工具。提供了几个示例来说明该包的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimension Reduction for Time Series in a Blind Source Separation Context Using R
Multivariate time series observations are increasingly common in multiple fields of science but the complex dependencies of such data often translate into intractable models with large number of parameters. An alternative is given by first reducing the dimension of the series and then modelling the resulting uncorrelated signals univariately, avoiding the need for any covariance parameters. A popular and effective framework for this is blind source separation. In this paper we review the dimension reduction tools for time series available in the R package tsBSS. These include methods for estimating the signal dimension of second-order stationary time series, dimension reduction techniques for stochastic volatility models and supervised dimension reduction tools for time series regression. Several examples are provided to illustrate the functionality of the package.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Statistical Software
Journal of Statistical Software 工程技术-计算机:跨学科应用
CiteScore
10.70
自引率
1.70%
发文量
40
审稿时长
6-12 weeks
期刊介绍: The Journal of Statistical Software (JSS) publishes open-source software and corresponding reproducible articles discussing all aspects of the design, implementation, documentation, application, evaluation, comparison, maintainance and distribution of software dedicated to improvement of state-of-the-art in statistical computing in all areas of empirical research. Open-source code and articles are jointly reviewed and published in this journal and should be accessible to a broad community of practitioners, teachers, and researchers in the field of statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信