{"title":"利用黄花马龙花生物合成纳米银及其抗菌和细胞毒活性","authors":"V. Thangapushbam, K. Muthu","doi":"10.1080/10667857.2022.2135475","DOIUrl":null,"url":null,"abstract":"ABSTRACT The aim of present study, biosynthesis of silver nanoparticles (Ag NPs) was synthesized from silver ions using aqueous extract of the whole plant of Martynia annua and its Antimicrobial and Cytotoxic activities. The extraction is made by non-polar to polar solvent using Soxhlet apparatus. Initially, the aqueous (water) extract was analysed the primary phytochemical test and used for the synthesis of Ag NPs. The obtained Ag NPs were characterized using UV-vis. spectroscopy, XRD analysis, FTIR spectrum and HRTEM. The UV-vis spectroscopy surface Plasmon resonance centre at 443nm was confirmed the formation of Ag NPs. XRD analysis and SAED pattern was determining the crystalline nature of metallic silver. HRTEM image shows the morphology of Ag NPs contains spherical shapes with sizes 10-25nm. The extract and green synthesized Ag NPs have significant antimicrobial activity against both bacteria and fungi and also have good cytotoxicity against human lung cancer cell line A549 .","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"1 1","pages":"3174 - 3183"},"PeriodicalIF":2.9000,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosynthesis of silver nanoparticles using Martynia annua and its antimicrobial and cytotoxic activities\",\"authors\":\"V. Thangapushbam, K. Muthu\",\"doi\":\"10.1080/10667857.2022.2135475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The aim of present study, biosynthesis of silver nanoparticles (Ag NPs) was synthesized from silver ions using aqueous extract of the whole plant of Martynia annua and its Antimicrobial and Cytotoxic activities. The extraction is made by non-polar to polar solvent using Soxhlet apparatus. Initially, the aqueous (water) extract was analysed the primary phytochemical test and used for the synthesis of Ag NPs. The obtained Ag NPs were characterized using UV-vis. spectroscopy, XRD analysis, FTIR spectrum and HRTEM. The UV-vis spectroscopy surface Plasmon resonance centre at 443nm was confirmed the formation of Ag NPs. XRD analysis and SAED pattern was determining the crystalline nature of metallic silver. HRTEM image shows the morphology of Ag NPs contains spherical shapes with sizes 10-25nm. The extract and green synthesized Ag NPs have significant antimicrobial activity against both bacteria and fungi and also have good cytotoxicity against human lung cancer cell line A549 .\",\"PeriodicalId\":18270,\"journal\":{\"name\":\"Materials Technology\",\"volume\":\"1 1\",\"pages\":\"3174 - 3183\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/10667857.2022.2135475\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2135475","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Biosynthesis of silver nanoparticles using Martynia annua and its antimicrobial and cytotoxic activities
ABSTRACT The aim of present study, biosynthesis of silver nanoparticles (Ag NPs) was synthesized from silver ions using aqueous extract of the whole plant of Martynia annua and its Antimicrobial and Cytotoxic activities. The extraction is made by non-polar to polar solvent using Soxhlet apparatus. Initially, the aqueous (water) extract was analysed the primary phytochemical test and used for the synthesis of Ag NPs. The obtained Ag NPs were characterized using UV-vis. spectroscopy, XRD analysis, FTIR spectrum and HRTEM. The UV-vis spectroscopy surface Plasmon resonance centre at 443nm was confirmed the formation of Ag NPs. XRD analysis and SAED pattern was determining the crystalline nature of metallic silver. HRTEM image shows the morphology of Ag NPs contains spherical shapes with sizes 10-25nm. The extract and green synthesized Ag NPs have significant antimicrobial activity against both bacteria and fungi and also have good cytotoxicity against human lung cancer cell line A549 .
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.