内卡河的基本水质模型:第2部分:基于模型的氧收支和情景分析

I. Haag
{"title":"内卡河的基本水质模型:第2部分:基于模型的氧收支和情景分析","authors":"I. Haag","doi":"10.1002/AHEH.200400653","DOIUrl":null,"url":null,"abstract":"In this paper the Basic Water Quality Model (BWQM) for the central part of River Neckar is used to analyse the oxygen budget and to assess the potentials of various measures to prevent or mitigate critical dissolved oxygen (DO) declines. It is shown that the oxygen budget is mainly governed by phytoplankton dynamics. The excessive growth of algae and the sudden break down of the resulting algal blooms may cause episodic DO depressions. Therefore, to stabilise the oxygen budget in a sustainable way, eutrophication has to be controlled within the central part of River Neckar and the upstream regions. The only feasible way to reach this goal appears to be a further drastic reduction of phosphorus emissions. In addition, it is indispensable to hold the very high standards of biochemical oxygen demand and ammonium retention at the wastewater treatment plants. A worse performance of the treatment plants would dramatically aggravate critical DO declines which may be caused by algae dynamics. As long as the oxygen budget is not completely stabilised, weir and turbine aeration can be used to mitigate DO depressions. It could be shown that the potentials of these measures suffice to keep DO at a tolerable level. However, due to the long travel times in River Neckar, it is important to start aeration up to several days before the DO minimum is reached.","PeriodicalId":7010,"journal":{"name":"Acta Hydrochimica Et Hydrobiologica","volume":"62 1","pages":"549-559"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Basic Water Quality Model for the River Neckar: Part 2 -model-based analysis of the oxygen budget and scenarios\",\"authors\":\"I. Haag\",\"doi\":\"10.1002/AHEH.200400653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the Basic Water Quality Model (BWQM) for the central part of River Neckar is used to analyse the oxygen budget and to assess the potentials of various measures to prevent or mitigate critical dissolved oxygen (DO) declines. It is shown that the oxygen budget is mainly governed by phytoplankton dynamics. The excessive growth of algae and the sudden break down of the resulting algal blooms may cause episodic DO depressions. Therefore, to stabilise the oxygen budget in a sustainable way, eutrophication has to be controlled within the central part of River Neckar and the upstream regions. The only feasible way to reach this goal appears to be a further drastic reduction of phosphorus emissions. In addition, it is indispensable to hold the very high standards of biochemical oxygen demand and ammonium retention at the wastewater treatment plants. A worse performance of the treatment plants would dramatically aggravate critical DO declines which may be caused by algae dynamics. As long as the oxygen budget is not completely stabilised, weir and turbine aeration can be used to mitigate DO depressions. It could be shown that the potentials of these measures suffice to keep DO at a tolerable level. However, due to the long travel times in River Neckar, it is important to start aeration up to several days before the DO minimum is reached.\",\"PeriodicalId\":7010,\"journal\":{\"name\":\"Acta Hydrochimica Et Hydrobiologica\",\"volume\":\"62 1\",\"pages\":\"549-559\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Hydrochimica Et Hydrobiologica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/AHEH.200400653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Hydrochimica Et Hydrobiologica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/AHEH.200400653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文利用基本水质模型(BWQM)分析了内卡河中部的氧收支,并评估了防止或减轻临界溶解氧(DO)下降的各种措施的潜力。结果表明,氧收支主要受浮游植物动力学控制。藻类的过度生长和由此产生的藻华的突然中断可能导致间歇性的DO下降。因此,为了可持续地稳定氧收支,必须控制内卡河中部和上游地区的富营养化。实现这一目标的唯一可行方法似乎是进一步大幅减少磷的排放。此外,污水处理厂必须保持很高的生化需氧量和氨潴留标准。如果污水处理厂的性能较差,则会大大加剧可能由藻类动态引起的临界溶解氧下降。只要氧收支没有完全稳定,堰和涡轮曝气可以用来减轻DO洼地。可以证明,这些措施的潜力足以使DO保持在可容忍的水平。然而,由于内卡河的旅行时间很长,在达到DO最小值前几天开始曝气是很重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Basic Water Quality Model for the River Neckar: Part 2 -model-based analysis of the oxygen budget and scenarios
In this paper the Basic Water Quality Model (BWQM) for the central part of River Neckar is used to analyse the oxygen budget and to assess the potentials of various measures to prevent or mitigate critical dissolved oxygen (DO) declines. It is shown that the oxygen budget is mainly governed by phytoplankton dynamics. The excessive growth of algae and the sudden break down of the resulting algal blooms may cause episodic DO depressions. Therefore, to stabilise the oxygen budget in a sustainable way, eutrophication has to be controlled within the central part of River Neckar and the upstream regions. The only feasible way to reach this goal appears to be a further drastic reduction of phosphorus emissions. In addition, it is indispensable to hold the very high standards of biochemical oxygen demand and ammonium retention at the wastewater treatment plants. A worse performance of the treatment plants would dramatically aggravate critical DO declines which may be caused by algae dynamics. As long as the oxygen budget is not completely stabilised, weir and turbine aeration can be used to mitigate DO depressions. It could be shown that the potentials of these measures suffice to keep DO at a tolerable level. However, due to the long travel times in River Neckar, it is important to start aeration up to several days before the DO minimum is reached.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信