基于概率集成的主动路径识别与分类。

Timothy Hancock, Hiroshi Mamitsuka
{"title":"基于概率集成的主动路径识别与分类。","authors":"Timothy Hancock, Hiroshi Mamitsuka","doi":"10.1142/9781848165786_0004","DOIUrl":null,"url":null,"abstract":"A popular means of modeling metabolic networks is through identifying frequently observed pathways. However the definition of what constitutes an observation of a pathway and how to evaluate the importance of identified pathways remains unclear. In this paper we investigate different methods for defining an observed pathway and evaluate their performance with pathway classification models. We use three methods for defining an observed pathway; a path in gene over-expression, a path in probable gene over-expression and a path of most accurate classification. The performance of each definition is evaluated with three classification models; a probabilistic pathway classifier - HME3M, logistic regression and SVM. The results show that defining pathways using the probability of gene over-expression creates stable and accurate classifiers. Conversely we also show defining pathways of most accurate classification finds a severely biased pathways that are unrepresentative of underlying microarray data structure.","PeriodicalId":73143,"journal":{"name":"Genome informatics. International Conference on Genome Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active pathway identification and classification with probabilistic ensembles.\",\"authors\":\"Timothy Hancock, Hiroshi Mamitsuka\",\"doi\":\"10.1142/9781848165786_0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A popular means of modeling metabolic networks is through identifying frequently observed pathways. However the definition of what constitutes an observation of a pathway and how to evaluate the importance of identified pathways remains unclear. In this paper we investigate different methods for defining an observed pathway and evaluate their performance with pathway classification models. We use three methods for defining an observed pathway; a path in gene over-expression, a path in probable gene over-expression and a path of most accurate classification. The performance of each definition is evaluated with three classification models; a probabilistic pathway classifier - HME3M, logistic regression and SVM. The results show that defining pathways using the probability of gene over-expression creates stable and accurate classifiers. Conversely we also show defining pathways of most accurate classification finds a severely biased pathways that are unrepresentative of underlying microarray data structure.\",\"PeriodicalId\":73143,\"journal\":{\"name\":\"Genome informatics. International Conference on Genome Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome informatics. International Conference on Genome Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781848165786_0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome informatics. International Conference on Genome Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781848165786_0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一种流行的代谢网络建模方法是通过识别经常观察到的途径。然而,什么是观察途径的定义以及如何评估已确定途径的重要性仍然不清楚。在本文中,我们研究了不同的方法来定义一个观察路径,并评价其性能与路径分类模型。我们使用三种方法来定义观察到的路径;一条基因过表达路径,一条基因可能过表达路径和一条最准确分类路径。用三种分类模型对每个定义的性能进行评价;一个概率路径分类器HME3M,逻辑回归和支持向量机。结果表明,使用基因过表达的概率来定义途径可以创建稳定和准确的分类器。相反,我们还显示定义最准确分类的路径发现严重偏差的路径,这些路径不代表底层微阵列数据结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Active pathway identification and classification with probabilistic ensembles.
A popular means of modeling metabolic networks is through identifying frequently observed pathways. However the definition of what constitutes an observation of a pathway and how to evaluate the importance of identified pathways remains unclear. In this paper we investigate different methods for defining an observed pathway and evaluate their performance with pathway classification models. We use three methods for defining an observed pathway; a path in gene over-expression, a path in probable gene over-expression and a path of most accurate classification. The performance of each definition is evaluated with three classification models; a probabilistic pathway classifier - HME3M, logistic regression and SVM. The results show that defining pathways using the probability of gene over-expression creates stable and accurate classifiers. Conversely we also show defining pathways of most accurate classification finds a severely biased pathways that are unrepresentative of underlying microarray data structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信