用于自主作业的自监督水下SLAM

F. Marques, Pedro Costa, Filipa Castro, Manuel Parente
{"title":"用于自主作业的自监督水下SLAM","authors":"F. Marques, Pedro Costa, Filipa Castro, Manuel Parente","doi":"10.4043/29602-MS","DOIUrl":null,"url":null,"abstract":"\n The Earth’s surface is mostly water-covered and the ocean is the source of a significant slice on natural resources and renewable energies. However, only a small fraction of the ocean has been surveyed. Being able to estimate the 3D model of the environment from a single video eases the task of surveying the underwater environment, saves costs and opens doors to autonomous exploration of unknown environments. In order to estimate the 3D structure of a vehicle’s surrounding environment, we propose a deep learning based Simultaneous Localization and Mapping (SLAM) method. With our method, it is possible to predict a depth map of a given video frame while, at the same time, estimate the movement of the vehicle between different frames. Our method is completely self-supervised, meaning that it only requires a dataset of videos, without ground truth, to be trained. We propose a novel learning based depth map prior using Generative Adversarial Networks (GANs) to improve the depth map prediction results. We evaluate the performance of our method on the KITTI dataset and on a private dataset of subsea inspection videos. We show that our method outperforms state of the art SLAM methods in both depth prediction and pose estimation tasks. In particular, our method achieves a mean Absolute Trajectory Error of 1.6 feet in our private subsea test dataset.","PeriodicalId":11149,"journal":{"name":"Day 1 Mon, May 06, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Self-Supervised Subsea SLAM for Autonomous Operations\",\"authors\":\"F. Marques, Pedro Costa, Filipa Castro, Manuel Parente\",\"doi\":\"10.4043/29602-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Earth’s surface is mostly water-covered and the ocean is the source of a significant slice on natural resources and renewable energies. However, only a small fraction of the ocean has been surveyed. Being able to estimate the 3D model of the environment from a single video eases the task of surveying the underwater environment, saves costs and opens doors to autonomous exploration of unknown environments. In order to estimate the 3D structure of a vehicle’s surrounding environment, we propose a deep learning based Simultaneous Localization and Mapping (SLAM) method. With our method, it is possible to predict a depth map of a given video frame while, at the same time, estimate the movement of the vehicle between different frames. Our method is completely self-supervised, meaning that it only requires a dataset of videos, without ground truth, to be trained. We propose a novel learning based depth map prior using Generative Adversarial Networks (GANs) to improve the depth map prediction results. We evaluate the performance of our method on the KITTI dataset and on a private dataset of subsea inspection videos. We show that our method outperforms state of the art SLAM methods in both depth prediction and pose estimation tasks. In particular, our method achieves a mean Absolute Trajectory Error of 1.6 feet in our private subsea test dataset.\",\"PeriodicalId\":11149,\"journal\":{\"name\":\"Day 1 Mon, May 06, 2019\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Mon, May 06, 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/29602-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, May 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/29602-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

地球表面大部分被水覆盖,海洋是自然资源和可再生能源的重要来源。然而,只有一小部分海洋被调查过。能够从单个视频中估计环境的3D模型,简化了测量水下环境的任务,节省了成本,并为未知环境的自主探索打开了大门。为了估计车辆周围环境的三维结构,我们提出了一种基于深度学习的同步定位和映射(SLAM)方法。使用我们的方法,可以预测给定视频帧的深度图,同时估计车辆在不同帧之间的运动。我们的方法是完全自我监督的,这意味着它只需要一个视频数据集,而不需要训练真实情况。我们提出了一种新的基于学习的深度图先验,使用生成对抗网络(GANs)来改善深度图预测结果。我们在KITTI数据集和海底检查视频的私人数据集上评估了我们的方法的性能。我们表明,我们的方法在深度预测和姿态估计任务中都优于最先进的SLAM方法。特别是,我们的方法在我们的私人海底测试数据集中实现了平均绝对轨迹误差为1.6英尺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Self-Supervised Subsea SLAM for Autonomous Operations
The Earth’s surface is mostly water-covered and the ocean is the source of a significant slice on natural resources and renewable energies. However, only a small fraction of the ocean has been surveyed. Being able to estimate the 3D model of the environment from a single video eases the task of surveying the underwater environment, saves costs and opens doors to autonomous exploration of unknown environments. In order to estimate the 3D structure of a vehicle’s surrounding environment, we propose a deep learning based Simultaneous Localization and Mapping (SLAM) method. With our method, it is possible to predict a depth map of a given video frame while, at the same time, estimate the movement of the vehicle between different frames. Our method is completely self-supervised, meaning that it only requires a dataset of videos, without ground truth, to be trained. We propose a novel learning based depth map prior using Generative Adversarial Networks (GANs) to improve the depth map prediction results. We evaluate the performance of our method on the KITTI dataset and on a private dataset of subsea inspection videos. We show that our method outperforms state of the art SLAM methods in both depth prediction and pose estimation tasks. In particular, our method achieves a mean Absolute Trajectory Error of 1.6 feet in our private subsea test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信