Z. Amimer, S. Bekhechi, B. N. Brahmi, R. Boudefla, H. Ez‐zahraouy, A. Rachadi
{"title":"用蒙特卡罗方法研究了自旋为S = 1和σ = 3/2的Ashkin Teller模型在不同晶体场作用下的特性","authors":"Z. Amimer, S. Bekhechi, B. N. Brahmi, R. Boudefla, H. Ez‐zahraouy, A. Rachadi","doi":"10.5488/CMP.23.33707","DOIUrl":null,"url":null,"abstract":"Using the Monte-Carlo method, we study the magnetic properties of the Ashkin-Teller model (ATM) under the effect of the crystal field with spins $S = 1$ and $\\sigma = 3/2$. First, we determine the most stable phases in the phase diagrams at temperature $T = 0$ using exact calculations. For higher temperatures, we use the Monte-Carlo simulation. We have found rich phase diagrams with the ordered phases: a Baxter $3/2$ and a Baxter $1/2$ phases in addition to a $\\left\\langle \\sigma S\\right\\rangle$ phase that does not show up either in ATM spin 1 or in ATM spin $3/2$ and, lastly, a $\\left\\langle \\sigma\\right\\rangle = 1/2$ phase with first and second order transitions.","PeriodicalId":8473,"journal":{"name":"arXiv: Statistical Mechanics","volume":"134 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Study of the Ashkin Teller model with spins S = 1 and σ = 3/2 subjected to different crystal fields using the Monte-Carlo method\",\"authors\":\"Z. Amimer, S. Bekhechi, B. N. Brahmi, R. Boudefla, H. Ez‐zahraouy, A. Rachadi\",\"doi\":\"10.5488/CMP.23.33707\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the Monte-Carlo method, we study the magnetic properties of the Ashkin-Teller model (ATM) under the effect of the crystal field with spins $S = 1$ and $\\\\sigma = 3/2$. First, we determine the most stable phases in the phase diagrams at temperature $T = 0$ using exact calculations. For higher temperatures, we use the Monte-Carlo simulation. We have found rich phase diagrams with the ordered phases: a Baxter $3/2$ and a Baxter $1/2$ phases in addition to a $\\\\left\\\\langle \\\\sigma S\\\\right\\\\rangle$ phase that does not show up either in ATM spin 1 or in ATM spin $3/2$ and, lastly, a $\\\\left\\\\langle \\\\sigma\\\\right\\\\rangle = 1/2$ phase with first and second order transitions.\",\"PeriodicalId\":8473,\"journal\":{\"name\":\"arXiv: Statistical Mechanics\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Statistical Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.23.33707\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Statistical Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5488/CMP.23.33707","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Ashkin Teller model with spins S = 1 and σ = 3/2 subjected to different crystal fields using the Monte-Carlo method
Using the Monte-Carlo method, we study the magnetic properties of the Ashkin-Teller model (ATM) under the effect of the crystal field with spins $S = 1$ and $\sigma = 3/2$. First, we determine the most stable phases in the phase diagrams at temperature $T = 0$ using exact calculations. For higher temperatures, we use the Monte-Carlo simulation. We have found rich phase diagrams with the ordered phases: a Baxter $3/2$ and a Baxter $1/2$ phases in addition to a $\left\langle \sigma S\right\rangle$ phase that does not show up either in ATM spin 1 or in ATM spin $3/2$ and, lastly, a $\left\langle \sigma\right\rangle = 1/2$ phase with first and second order transitions.